The Bacterial Endotoxins Test:
A Practical Approach

Karen Zink McCullough

PDA
Bethesda, MD, USA
DHI Publishing, LLC
River Grove, IL, USA
CONTENTS

Foreword xiii
Author’s Preface xv
Glossary xix

I Discovery and Acceptance of the Bacterial Endotoxins Test

James F. Cooper

Discovery 1
Preparation of Limulus Amebocyte Lysate (LAL) 3
Origin of LAL methods 3
Comparison of LAL and pyrogen tests 4
Commercialization of LAL reagent 5
Symposia at Woods Hole 6

Acceptance 6
Pyrogen and LAL tests at the FDA 7
Industry acceptance of LAL methods 7
The LAL-Test Guideline 8
Revolutionizing the validation of depyrogenation processes 9
LAL Reactive Glucan (LRG) challenges specificity 9
Evolution of the compendial Bacterial Endotoxins Test (BET) 10

iii
2 Understanding Reaction Basics

Michael E. Dawson

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>15</td>
</tr>
<tr>
<td>The LAL Clotting Reaction</td>
<td>15</td>
</tr>
<tr>
<td>The recombinant Factor C assay</td>
<td>22</td>
</tr>
<tr>
<td>Endotoxin</td>
<td>24</td>
</tr>
<tr>
<td>Glucans</td>
<td>25</td>
</tr>
<tr>
<td>Conclusion</td>
<td>26</td>
</tr>
<tr>
<td>References</td>
<td>26</td>
</tr>
<tr>
<td>About the Author</td>
<td>28</td>
</tr>
<tr>
<td>Appendix</td>
<td>29</td>
</tr>
</tbody>
</table>

3 Constructing and Interpreting Standard Curves for Quantitative BET Assays

Karen Zink McCullough

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Endpoint Assay</td>
<td>33</td>
</tr>
<tr>
<td>The Kinetic Assay</td>
<td>36</td>
</tr>
<tr>
<td>Accuracy</td>
<td>39</td>
</tr>
<tr>
<td>Anatomy and Attributes of a Standard Curve</td>
<td>40</td>
</tr>
<tr>
<td>Slope</td>
<td>40</td>
</tr>
<tr>
<td>y-intercept</td>
<td>41</td>
</tr>
<tr>
<td>Correlation coefficient</td>
<td>41</td>
</tr>
<tr>
<td>Coefficient of variation</td>
<td>42</td>
</tr>
<tr>
<td>Analysis: Effects of Standard Curves on the Accuracy of Data</td>
<td>43</td>
</tr>
<tr>
<td>Scenario 1 — effect of changes in slope</td>
<td>45</td>
</tr>
<tr>
<td>Scenario 2 — effect of changes in y-intercept</td>
<td>48</td>
</tr>
<tr>
<td>Scenario 3 — effect of changes in %CV</td>
<td>50</td>
</tr>
<tr>
<td>Scenario 4 — effect of non-linearity</td>
<td>52</td>
</tr>
<tr>
<td>Alternate regression analysis</td>
<td>56</td>
</tr>
<tr>
<td>Discussion</td>
<td>57</td>
</tr>
<tr>
<td>Conclusion</td>
<td>60</td>
</tr>
<tr>
<td>References</td>
<td>61</td>
</tr>
<tr>
<td>About the Author</td>
<td>62</td>
</tr>
</tbody>
</table>
4 Qualifying the Laboratory 63

Ronald N. Berzofsky

Equipment 64
Qualifying Incubators 65
Qualifying Timers 70
Qualifying Ancillary Supplies 71
Qualifying Procedures 74
 Inhibition/enhancement 74
 Storage of samples and standards 75
Qualifying Reagents 76
 The LAL reagents 76
 Endotoxins 77
 Buffers and solutions 78
 Qualifying the analyst 80
Dilutions 80
Conclusions 82
References 83
About the Author 83

5 Calculating Endotoxin Limits, Maximum Valid Dilutions and Minimum Valid Concentrations 85

Karen Zink McCullough

Endotoxin Limits 85
 Endotoxin limits for small volume parenteral drugs and biologicals 86
 Endotoxin limits for large volume parenterals 92
 Endotoxin limits for radiopharmaceuticals 93
 Endotoxin limit for drugs administered per square meter of body surface 94
 Setting endotoxin limits for a product 95
 Endotoxin limits in test solutions 96
Maximum Valid Dilution (MVD) 97
Minimum Valid Concentration (MVC) 99
Summary 101
Problem Set 102
References 110
About the Author 113
6 Assigning Endotoxin Limits to Noncompenial Articles 115

Michael E. Dawson

Conclusion 129
References 129
About the Author 130

7 Applying USP Test Requirements: Medical Devices 131

Marilyn J. Gould

The Challenge 131
USP and Other References Pertaining to Testing Devices 132
Historical Perspectives — How Much Endotoxin is Pyrogenic? 133
A Reference Standard Endotoxin and Threshold Pyrogenic Dose 134
Comparing the 1987 FDA Guideline Device Limits with Drug or Biologics Limits 135
Intraethecal Endotoxin Limit 135
USP <161> Specifies LAL Reagent Water (LRW) as the Extraction Medium 136
Situations When a Solvent Other than Water May Be Required 137
Qualify the Extraction Medium 138
Sample Sizes May Vary with Lot Sizes 138
USP Equation to Calculate Limits for the BET Extraction Volumes Less than 40 mL/Device 139
Extraction Volumes Greater than 40mL/Device 141
Find a Convenient Volume Other than 40 mL/Device 141
Maximum Valid Dilution (MVD) 142
What is a Device for Purposes of Calculating Limits? 143
Critical Surfaces 143
Before Testing a Device for the First Time 144
What Extraction Volume Should be Used? 149
What if the Ideal Extraction Volume Exceeds the Calculated Maximum Volume? 150
Multiple extractions in the same volume 150
Concentrate the extract 150
Extraction Containers 152
Extractions — Physical Considerations 152
Challenge and Recovery 153
Handling Devices to Set Up Extractions 154
Steps to Perform a USP Test on a Medical Device 155
One Final Note 157
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>158</td>
</tr>
<tr>
<td>About the Author</td>
<td>161</td>
</tr>
<tr>
<td>8 Verifying USP Test Methodology</td>
<td>163</td>
</tr>
<tr>
<td>Karen Zink McCullough</td>
<td></td>
</tr>
<tr>
<td>Spiking</td>
<td>167</td>
</tr>
<tr>
<td>Double-double method</td>
<td>168</td>
</tr>
<tr>
<td>Hot spike</td>
<td>169</td>
</tr>
<tr>
<td>Test Method Development</td>
<td>170</td>
</tr>
<tr>
<td>Calculation of the endotoxin limit</td>
<td>171</td>
</tr>
<tr>
<td>Calculation of the MVD and/or MVC</td>
<td>173</td>
</tr>
<tr>
<td>Preliminary testing</td>
<td>174</td>
</tr>
<tr>
<td>Inhibition/Enhancement, or Verification of the Suitability of the Test Method</td>
<td>181</td>
</tr>
<tr>
<td>Suitability testing for gel clot</td>
<td>182</td>
</tr>
<tr>
<td>Suitability testing for quantitative tests</td>
<td>185</td>
</tr>
<tr>
<td>Some Questions Regarding Suitability Testing</td>
<td>186</td>
</tr>
<tr>
<td>Chapter Questions</td>
<td>187</td>
</tr>
<tr>
<td>Appendix. Example Template for a Gel Clot Suitability Study</td>
<td>188</td>
</tr>
<tr>
<td>References</td>
<td>192</td>
</tr>
<tr>
<td>About the Author</td>
<td>193</td>
</tr>
<tr>
<td>9 Resolving Test Interferences</td>
<td>195</td>
</tr>
<tr>
<td>John Dubczak</td>
<td></td>
</tr>
<tr>
<td>Inhibition</td>
<td>196</td>
</tr>
<tr>
<td>Inhibition due to pH</td>
<td>197</td>
</tr>
<tr>
<td>Inhibition due to high osmolarity</td>
<td>200</td>
</tr>
<tr>
<td>Inhibition due to chelating agents</td>
<td>200</td>
</tr>
<tr>
<td>Inhibition due to Ca(^{++}) containing formulations</td>
<td>201</td>
</tr>
<tr>
<td>Inhibition due to protease inhibitors</td>
<td>202</td>
</tr>
<tr>
<td>Inhibition due to heavy metals</td>
<td>202</td>
</tr>
<tr>
<td>Inhibition due to detergents</td>
<td>204</td>
</tr>
<tr>
<td>Inhibition due to proteins</td>
<td>204</td>
</tr>
<tr>
<td>Inhibition due to liposomes</td>
<td>205</td>
</tr>
<tr>
<td>Enhancement</td>
<td>206</td>
</tr>
<tr>
<td>Enhancement due to beta 1-3 glucans</td>
<td>206</td>
</tr>
<tr>
<td>Enhancement due to serine proteases</td>
<td>210</td>
</tr>
<tr>
<td>Enhancement due to detergents</td>
<td>210</td>
</tr>
<tr>
<td>Conclusion</td>
<td>212</td>
</tr>
<tr>
<td>References</td>
<td>214</td>
</tr>
<tr>
<td>About the Author</td>
<td></td>
</tr>
</tbody>
</table>
10 Performing Routine Tests 215

Introduction 215

Equipment and materials 217

Sampling 218

Sample containers and accessories 218
Sampling Water for Injection (WFI) 219
Sampling incoming raw materials 221
In-process samples 222
Drug product sampling 225
Pooling 225
Storing endotoxin standards and test samples 227

Establishing a Testing Routine 228

Sources of error 228
Assay prerequisites 229
Controls 233

Negative control 233
Positive Product Control (PPC) 233
Method 1: “Double-double” method 234
Method 2: “Hot spike” method 234
Standard series (gel clot) or standard curves (quantitative tests) 236

Sample preparation 237
Assay set-up — gel clot 238
Gel clot limits test 238
Gel clot assay 240
Assay set-up: quantitative tests 241
Standard curves in routine testing 242
Archived standard curves 243
Product standard curves 244
Positive product controls and routine testing 245

Data Analysis and Interpretation 248

Calculating and reporting results for the gel clot limits test 249
Gel clot assay 250
Quantitative tests 252
Converting EU/ml to EU/unit of drug product 252

Robotics and Routine Testing 253

Reporting Results 253
Header section 254
Standards 255
Sample results 257
Masking test results 259
11 Investigating Out-of-Specification (OOS) BET Results

Karen Zink McCullough

1987 FDA Guideline

Current Thinking: FDA’s 2006 OOS Guidance

Principle 1. The laboratory may not test a product into compliance

Principle 2. Test results may not be averaged into compliance

Principle 3. Investigations into OOS results must be thorough, unbiased, scientific, timely and well documented

Principle 4. Investigations, where appropriate, must include associated batches of product

SOPs for Investigating BET OOS Results

Phase I Laboratory Investigations: Identifying Critical Points in the Lab

Creating the OOS Checklist: Fault Tree Analysis

Retesting

Beyond the Laboratory: Phase II Investigation

Thoughts on the Pretest from the Beginning of this Chapter

Summary

References

About the Author

Appendix. Basic checklist for Investigating BET OOS Results

12 Structuring a Depyrogenation Study

John Dubczak

Elements to a Depyrogenation Process Qualification

Endotoxin Indicators and Their Use

Dry Heat Pyrogenation

Dry Heat Process Qualification Studies

Cleaning/Rinsing Depyrogenation Process Qualification

Equipment cleaning/depyrogenation
Contents

FMEA

HACCP Step 6. Establish verification procedures 356
HACCP Step 7. Establish record-keeping and documentation procedures 356
Summary 357
References 357
About the Author 359

15 Auditing the BET Laboratory 361
Karen Zink McCullough

The Audit Cycle 364
Planning 365
Preparing an audit checklist 367
Preparation 369
Execution 373
Reporting 374
Monitoring 375
Summary 378
Appendix. Sample audit plan/checklist 379
References 382
About the Author 383

16 Regulatory Summary 385
Karen Zink McCullough

Index 399
FOREWORD

Scott Sutton

It is an honor to have been asked to write the foreword to this important book on the Bacterial Endotoxins Test. This volume is significant not only because of the timing of the work, coming as the field is in a state of flux with new technologies and new regulations, but also because of its practical, bench-level focus.

There are several books available on the Bacterial Endotoxins Test. Some approach it from an ecological perspective, focusing on the horseshoe crab and the impact that farming is having on its population. Others address the topic from a clinical and chemical perspective, heavy on theory and academic considerations. These are valuable contributions to the literature and their review is recommended for anyone who wishes a broad grounding in the development and science of the test. However, they are not directed specifically at the needs of the lab worker in regulated industries. In fact, this book is one of a very limited number of technically competent works directed to the QC lab worker in any topic and for that reason alone warrants a place on the serious quality professional’s bookshelf.
Even beyond this consideration, it has to be noted that it is difficult to bring a diverse group of workers together and produce a book that is readable and technically challenging at the same time. The top-rank authors assembled herein have produced such a book, and done it without yielding to the temptation of promoting their own products. This is especially noteworthy in that most of the authors work for companies that are in direct competition with each other, and are generally not shy about disagreeing with each other. The discussions in this book are remarkable in the absence of commercial promotion — science and technical methodology take center stage throughout.

Enjoy the time you spend with this book. It won’t really matter if you are looking for a historical perspective on the development of the test or an explanation of exactly why the y-intercept is an important consideration of the standard curve, you will almost certainly learn something new about the bacterial endotoxin test and the role it plays in QC operations in pharma, biopharma, medical devices and all healthcare-related regulated industries.

Scott Sutton, Ph.D.
Microbiology Network, Inc.
April, 2011
Welcome.

The goal of this book is to provide sensible and useful information for those who are responsible for the performance and interpretation of the Bacterial Endotoxins Test (BET). The concept was to create a user-friendly reference tool for BET analysts, laboratory managers and regulatory/compliance specialists that is part lab manual, part textbook, part tutorial, and part non-commercial consultant.

For those laboratories new to BET, this book lays a solid foundation by providing information and tips for qualifying the laboratory, calculating endotoxin limits, verifying USP test methodology, resolving test interferences and performing routine tests for parenteral drugs, biologics and medical devices.

For those laboratories that are experienced in BET, this book builds on basic testing requirements by discussing topics such as
setting endotoxin limits for noncompendial articles, structuring a depyrogenation study, setting action and alert limits and identifying endotoxin-specific critical control points in manufacturing.

The content of this book represents an amazing 200+ author-years of experience in the field. With many thanks to Alan Baines, Ron Berzofsky, Jim Cooper, Mick Dawson, John Dubczak and Marilyn Gould for their extraordinary contributions to this effort, their remarkable perspective and their expert sage advice, I hope that the information in this book will help everyone to take a practical approach to the Bacterial Endotoxins Test.

Karen Zink McCullough
Whitehouse Station, NJ
April, 2011