Technical Report No. 54
Implementation of Quality Risk Management For Pharmaceutical and Biotechnology Manufacturing Operations

Paradigm Change in Manufacturing Operations℠

2012

Authors

Emabelle Ramnarine, Task Force Leader, Genentech

Jeffrey L. Hartman, Co-Leader, Merck

Thomas Genova, Ph.D., Johnson & Johnson

Laura Huffman, United States Food and Drug Administration

Kathy Lee, United States Food and Drug Administration

Michael A. Long, Ph.D., ConcordiaValSource

Kevin O’Donnell, Ph.D., Irish Medicines Board

Jayesh Patel, F. Hoffmann-La Roche Inc.

Siegfried Schmitt,* Ph.D., PAREXEL Consulting

Rebecca Spohn, Amgen Inc.

Edward C. Tidswell, Ph.D., Baxter Healthcare Corporation

Robert P. Tomaselli, Johnson & Johnson SPT

Anthony C. Warchut, PAREXEL Consulting

Other Contributors

James Agalloco, Agalloco & Associates, Inc.

James E. Akers, Akers, Kennedy and Associates

Kristen Anderson, United States Food and Drug Administration

Veronique D. Davoust, Ph.D., Pfizer

Lance D. Goodreau, New England BioLabs

Ghada Haddad, Genentech

William Harclerode, Forest Labs

Kristin Murray, Pfizer

Stephen Reich, Pfizer

* PDA and the Task Force wants to thank Siegfried Schmitt for spending a considerable amount of time volunteering as the copy editor for this Technical Report. His effort resulted in a well-edited document and saved PDA resources it would normally have committed to a professional copy editor.

This technical report was developed as part of PDA’s Paradigm Change in Manufacturing Operations (PCMO) project. The content and views expressed in this Technical Report are the result of a consensus achieved by the Task Force and are not necessarily views of the organizations they represent.
Paradigm Change in Manufacturing Operations (PCMO℠)

PDA launched the project activities related to the PCMO program in December 2008 to help implement the scientific application of the ICH Q8, Q9 and Q10 series. The PDA Board of Directors approved this program in cooperation with the Regulatory Affairs and Quality Advisory Board, and the Biotechnology Advisory Board and Science Advisory Board of PDA.

Although there are a number of acceptable pathways to address this concept, the PCMO program follows and covers the drug product lifecycle, employing the strategic theme of process robustness within the framework of the manufacturing operations. This project focuses on Pharmaceutical Quality Systems as an enabler of Quality Risk Management and Knowledge Management.

Using the Parenteral Drug Association’s (PDA) membership expertise, the goal of the Paradigm Change in Manufacturing Operations Project is to drive the establishment of ‘best practice’ documents and /or training events in order to assist pharmaceutical manufacturers of Investigational Medicinal Products (IMPs) and commercial products in implementing the ICH guidelines on Pharmaceutical Development (ICH Q8, Q11), Quality Risk Management (ICH Q9) and Pharmaceutical Quality Systems (ICH Q10).

The PCMO program facilitates communication among the experts from industry, university and regulators as well as experts from the respective ICH Expert Working Groups and Implementation Working Group. PCMO task force members also contribute to PDA conferences and workshops on the subject.

PCMO follows the product lifecycle concept and has the following strategic intent:
• Enable an innovative environment for continual improvement of products and systems
• Integrate science and technology into manufacturing practice
• Enhance manufacturing process robustness, risk based decision making and knowledge management
• Foster communication among industry and regulatory authorities

For more information, including the PCMO Dossier, and to get involved, go to www.pda.org/pcmo
1.0 Introduction
 1.1 Purpose and Scope

2.0 Glossary of Terms

3.0 General Principles On Quality Risk Management Application
 3.1 When, Where, and How to Apply Quality Risk Management
 3.1.1 Quality Risk Management Application During Pharmaceutical Development
 3.1.2 Quality Risk Management Application during Technology Transfer
 3.1.3 Quality Risk Management Application During Commercial Manufacturing
 3.1.4 Quality Risk Management Application During Product Discontinuation
 3.2 Proactive and Reactive Application of Quality Risk Management
 3.3 Formality of the Quality Risk Management Process
 3.4 Establishing a Quality Risk Management Policy
 3.5 Management Commitment
 3.6 Understanding the Organization and How it Contextualizes Risk
 3.7 Integration into Organizational Processes
 3.8 Establishing Communication and Reporting Mechanisms
 3.9 Roles and Responsibilities
 3.10 Heuristics and Biases in Quality Risk Management

4.0 Implementation Of The Quality Risk Management Process
 4.1 Initiating a Quality Risk Management Process
 4.2 Risk Assessment
 4.2.1 Execution of Risk Assessments
 4.2.2 Risk Identification
 4.2.3 Risk Analysis
 4.2.4 Risk Evaluation
 4.2.5 Supporting Tools
 4.3 Risk Control
 4.3.1 Risk Reduction
 4.3.2 Risk Acceptance
 4.4 Output/Result of the Quality Risk Management Process
 4.4.1 Risk Register
 4.5 Risk Review
 4.5.1 Event-Based Reviews
 4.5.1.1 Deviations or Non-Conformances
 4.5.1.2 Product Complaints, Returns, or Patient Safety Related Events
 4.5.1.3 Data Trends
 4.5.1.4 Change Control
 4.5.1.5 Audits and Inspections
 4.5.2 Scheduled Reviews
 4.6 Risk Communication
 4.6.1 Essential Elements of Risk Communication
 4.6.2 Difficulties with Risk Communication

5.0 How To Use Quality Risk Management As An Enabler
 5.1 QRM Application During Process Validation Lifecycle
 5.1.1 Quality Risk Management Applied to Stage 1 Process Design
 5.1.2 Quality Risk Management Applied to Stage 2 Process Qualification
 5.1.3 Quality Risk Management Applied to Sterilization and Cleaning Validation
 5.1.4 Quality Risk Management Applied to Stage 3 Continued Process Verification
 5.2 QRM Application during Facilities, Manufacturing and Control Systems Lifecycle
 5.2.1 Lifecycle Strategy
 5.2.2 Quality Risk Management Application to System Qualification Activities
5.2.3 QRM Application to Facility and Equipment Operation, Maintenance and Continual Improvement 37
5.2.4 Facility and Equipment Design: Dedicated Versus Multi-Product Facilities 38
5.3 Quality Risk Management Application During Technology Transfer 39
5.4 Quality Risk Management Application in Materials Management 41
5.4.1 Supplier Selection and Management 41
5.4.2 Risk Control for Suppliers 43
5.4.3 Quality Agreements 45
5.5 Quality Risk Management Application for Contract Services 46
5.5.1 Supplier Selection, Initiation and Technology Transfer 46
5.5.2 Routine Oversight of Supplier 47
5.5.3 Continual Improvement 48
5.5.4 Supplier Decommissioning 48
5.6 Knowledge Management 48
6.0 Conclusions 50
7.0 References 51

FIGURES AND TABLES INDEX

Figure 1-1 Example of a Maturity Model for QRM 2
Figure 3.1-1 Product Lifecycle 7
Figure 3.3-1 Rigor and Formality of QRM Approaches 9
Figure 3.3-2 Rigor and Formality Spectrum for QRM Activities 10
Table 3.7-1 Risk Management Maturity Level 12
Table 3.10-1 Strategies to Manage Common Perception Biases 15
Figure 4.2-1 Identifying the Level of Rigor for a Risk Assessment 17
Table 4.2-1 Comparison of Common Risk Management Tools 19
Figure 4.2.4-1 Classifications of Risks 21
Table 4.6.1-1 Summary of Essential Information Conveyed to Ensure an Effective and Sustainable QRM Program 29

Figure 5.2.1-1 Systems Lifecycle 35
Figure 5.2.2-1 Approach for QRM Application to Determine System Testing Requirements 37
Figure 5.2.3-1 QRM Application during Operation and Maintenance Activities 38
Figure 5.4.1-1 Supplier Assessment and Qualification Lifecycle 42
Table 5.4.2.1 Example of Risk Management Application to Determine Supplier Audit Frequency 44
Figure 5.5-1 Lifecycle for Control of Contract Manufacturing Organizations 46
Table 5.5.2-1 Example of QRM Application to Ensure Sufficient CMO Oversight 47