LABORATORY DESIGN

ESTABLISHING THE FACILITY AND MANAGEMENT STRUCTURE

Edited by Scott Sutton

CONTENTS

I The Role of Microbiology in a Pharmaceutical Quality Program

Anthony M. Cundell

Introduction Microbiological Testing Laboratories The Role of Microbiology in Quality Assurance/Control USP Chapter <51> Antimicrobial Effectiveness Test USP Chapter <61> and <62> Microbiological Examination Tests USP Informational Chapter <111> USP <71 > Sterility Test USP <85> Bacterial Endotoxin Tests USP <1116> Microbiological Evaluations of Clean Rooms USP <1231> Water for Pharmaceutical Purposes Organization of the Microbiological Testing Laboratory by Work Stations Compliance in the Pharmaceutical Microbiology Laboratory Investigations References About the Author

Laboratory Design	
/8	

2	Management Issues in the Microbiology Laboratory Roger Dabbah	13
	Introduction	
	General Principles of Management for the Microbiology	
	Function in an Organization	14
	The principle of accountability	14
	The principle of responsibility	14
	The principle of resource availability	14
	The principle of system thinking	15
	The principle of the management of people	15
	The principle of scanning the external environment	15
	The principle of open communication with supervisors,	
	peers, and employees	15
	The principle of ethical behavior	16
	Technical Issues in a Microbiology Laboratory that Influence	
	the Management Issues	16
	Selection of methods to be used for microbiological	
	testing	16
	The methods used should be validated for their	
	intended purpose	17
	Technology transfer of methods from the microbiology	
	laboratory to plant QC laboratories	17
	USP tests — use and misuse	18
	Harmonization of Microbiological Tests and Requirements	18
	GMPs and GLPs impact on the management of a	
	microbiology laboratory	19
	ISO certification of a microbiology laboratory	20
	Administrative Issues	21
	Performance plans for microbiologists	21
	Performance appraisal	21
	Performance criteria	22
	Hiring and firing of microbiologists	23
	Training of microbiologists	23
	Managerial Issues in the Microbiology Function	24
	Planning	24
	Is the activity routine or strategic?	25
	Describe the activity	26
	When was the activity started and why?	26
	When do you think the activity will be finished?	26
	What is the benefit of the activity for the	
	organization as a whole?	27
	What will happen if the activity is eliminated?	27
	What is the probability of success of that activity?	27

What is the probability of success of that activity?	28
What amount of resources does the activity require?	20
Can you divide the activity into a minimum activity	20
and some incremental activities?	28
Can the activity at any level be outsourced?	20
Organizing	29
Monitoring and control	30
Productivity	30
Conflict management	31
Budget development	37
Balationship between the microbiology function and the	52
other functions of the organization	22
Communications	22
Communications with scientific personnel	22
Communications with support personnel	22
Out Sources and/on Sub contraction	33 24
Sutermal leaves Configurated by the Management of the	34
External issues Controlled by the Management of the	24
	34 24
	34
Irade associations	30
Standard-setting organizations	30
Presentations at meetings	35
Publications	36
Regulatory agencies development related to microbiology	24
and microbiological quality assurance and control	36
The Application of the Principles of Project Management in a	27
Microbiology function	3/
Planning	31
The development of a work breakdown	27
structure (VVBS)	37
The development of a budget	3/
I he development of a responsibility matrix	38
The project manager's function	38
The project team	38
l he project plan	38
Project scope	38
Project objectives	39
lechnical approach to be used	39
Specifications of final deliverable	39
Schedule	39
Budget	39
Risk assessment	40
Monitoring and control methods	40

Laboratory Design

	Some Final Thoughts on the Management of Microbiology	40
	References	41
	About the Author	41
3	Quality Systems for the QC Microbiology Laboratory	43
	Lucia Clontz	
	Introduction	43
	The Cost of Quality	44
	Quality Systems	45
	Implementing an effective quality system	46
	Design phase	47
	Implementation phase	47
	Verification phase	47
	Finalization phase	47
	Monitoring/revising phase	48
	Quality System for the QC Microbiology Laboratory	48
	Management responsibilities	49
	Leadership	49
	Meeting customer needs	49
	Commitment to continuous improvement	49
	Resources	50
	Laboratory facilities	50
	Laboratory equipment	52
	Personnel	53
	Materials and supplies	54
	Laboratory operations	59
	Documentation practices	60
	Laboratory investigations	60
	Monitoring operational inputs and outputs	62
	Change control	62
	Method suitability verification and validation	63
	Method transfer	69
	Data analysis	70
	Variability in microbial counts	71
	Data trending and statistical analysis	72
	Alert and action levels	72
	Conclusion	73
	References	73
	About the Author	

4 Laboratory Investigations of Microbiological Data Deviations (MDD)

77

Contents

Introduction	73
Conducting a Laboratory Investigation	
Equipment issues	85
Media issues	85
Microbial culture issues	86
Personnel issues	86
Procedural issues	87
Sample issues	87
Closing the Laboratory Investigation	87
Does the MDD Involve Finished Product Specification?	88
Investigation MDD of Specific Tests	88
Antimicrobial efficacy tests	89
Bacterial endotoxin tests	89
Environmental monitoring events	90
In-process tests — raw material and pre-sterilized	
bulk bioburden	91
Media fill events	91
Microbial limits tests	92
Sterility tests	92
Water systems testing	93
Corrective Action Plan	93
Futher Reading	94
About the Author	

5 Training Personnel in the Microbiology Laboratory 00 Michele M. Conway

- Introduction Training Methods Evaluating Training Ongoing Training Laboratory Specific Training Summary References About the Author
- 6 Safety Considerations in the Quality Control Microbiology Laboratory Scott Sutton

00

General Safety Considerations

Biosafety Considerations General issues **Biological risk levels Biological safety levels** Leadership The Biological Safety Cabinet **Clean Benches** HEPA Filtration of Air Cleaning and Sanitization of a BSC Standard Operating Procedures (SOP) Support - Recommended Instruction to the Technician **Biosafety Biosafety** manual **Biohazardous spills** Decontamination of microorganism Eating, drinking smoking, and the application of makeup in the lab Laboratory hygiene procedures Transferring cultures Use of PPE Clean benches and biosafety hoods Shipping infectious materials General Safety Summary References About the Author

7	Microbiological Quality for the 21st Century	00
	Linda Skowronsky	
	Introduction	00
	A Brief Historical View	
	Beyond cGMPs	
	QbD for Microbiology — The Microbiological Risk Assessment	
	Target the Product Profile	
	Identify the Critical Quality Attributes (CQAs)	
	Linking Material Attributes and Process Parameters to	
	Drug Product CQAs	
	Finished product and raw material limit strategies	
	Test method strategies	
	Preservative strategy	
	Stability strategy	

www.pda.org/bookstore

Contents

In-process control strategy Environment, process water, and cleaning strategies Microbiologibal Control Strategy Manage Product Lifecycle, Including Continual Improvement Technology Transfer Test Method Transfer Microbiological Control Development Report Change Control/Change Management — General Changes that can Impact the Microbial Bioburden of a Formula Conclusion References Appendix About the Author

8	Design and Layout of the Microbiology Lab William M. Bennett	00
	Introduction	
	Planning	
	Building site	
	Public utilities	
	User Requirements Specification	
	Building site	
	Laboratory	
	Equipment list	
	Functional Design	
	Unitary operation diagram	
	Interaction diagram	
	Room design criteria	
	Point of use	
	Construction documents	
	Architectural drawings	
	Mechanical drawings	
	Electrical drawings	
	Conclusion	
	References	
	Appendix A — URS Development	
	Appendix B — Room Design Criteria	
	About the Author	

Building and Equipping a Microbiology Laboratory: How to Budget Size and Cost Bob Ferer and Scott Sutton Introduction Know Your Process Non-Routine Testing Equipment Needs Common Equipment Needs Storage Needs Quantify the Number of Samples Quantify the Number of Samples for Stability and Retain Contract Laboratory Support Costs Equipment costs Facility finishing costs

Alternate calculation method

About the Authors

10 Laboratory Water

T.C.Soli

Introduction Determining the Required Water Quality General lab operation requirements Microbiology lab operation requirements Facility housekeeping Equipment and labware cleaning Growth media preparation General assay reagent preparation Special methodologies System Design and Distribution Considerations Shared vs. dedicated systems Extension of manufacturing water system to laboratories Cross-connection of the manufacturing and laboratory systems Dedicated laboratory systems Cost consideration Cost/budget overruns Optimizing water availability costs System qualification needs Source water impact

00

00

8

Maintaining and monitoring quality Whose job is it? Water system monitoring Chemical quality Microbiological quailty Other attributes of importance Establishing specifications Establishing alert and action levels Impact of Poor Water Quality Impact on analyses and products Impact on laboratory compliance Impact on facility compliance Concluding Summary References About the Author

11 The Media Kitchen: Preparation and Testing of Microbiological Culture Media

Tim Sandle

00

Introduction Culture Media Complex culture media Enriched media Defined culture media Selective media Design of the Media Kitchen Design of the facilities Utilities Water Steam quality and autoclave operation **Incoming Materials** Media Manufacturing Batch records Equipment Weighing Preparation Initial preparation Rehydration Sterilization Addition of supplements Filling Labelling

Secondary Sterilization Media Quarantine and Release Quarantine Release Physical characteristics pН Contamination/reality Gel strength Growth promotion Qualitative techniques **Quantitative techniques** Quality control of purchased media and reduced testing Storage and Expiry Disposal Documentation Troubleshooting Conclusion References About the Author

12 Environmental Monitoring of Microbiology Laboratories 00

Frank Settineri

Introduction Training Laboratory Design and Flow Sample receipt area Sample staging and holding area Biohazard waste area Media preparation areas General testing area Live organism area (for identification, growth promotion, and culture preparation Cleanroom areas (suites or isolators) for sterility testing Documentation Standard Operating Procedures (SOPs) Protocols Reporting of data Sample number Raw data form **Specifications**

www.pda.org/bookstore

Contents

Equipment, Utensils, Instruments, and Work Surfaces Alert/Action Levels Nonviable Particles Contract Laboratories Objectionable Organisms Summary References About the Author

13 The Laboratory Design and Layout for Microbial Identification

Anthony M. Cundell

00

Introduction Instrument Specifications Instrument dimensions and weight Temperature and humidity requirements Air handling UV irradiation Vibration controls Electromagnetic field controls Compressed gases or vacuum requirements Solvent storage Power supply Safety considerations Biosafety Level I **Biosafety Level 2** References About the Author

14 Microbiology Manufacturing Support Laboratory

David A. Porter

Overview

Types of support testing Equipment, in general Facilities, in general Disinfectancy Antimicrobial Effectiveness Bioburden Identification Sterility

11

Environmental Monitoring General Equipment and Facilities References About the Author

15 Building or Remodeling a Laboratory for the Bacterial Endotoxin Test

00

Karen Zink McCullough Your Constraints: Timelines and Budgets Timelines **Budgets** User Requirements and Specifications What assays are you doing? What equipment do we need to perform these tasks? What utilities and provision for information technology (IT) do you need? What furniture or finishes are required? What kind of floor plan do you need to accommodate sufficient workspace, proper flows, convenient support areas, etc.? Lab space Support areas Office space Create and Execute a Validation Master Plan Standard Operating Procedures and Training Summary References About the Author