Quality by Design Putting Theory into Practice

Siegfried Schmitt

PDA Bethesda, MD, USA DHI Publishing, LLC River Grove, IL, USA

10 9 8 7 6 5 4 3 2 1

ISBN: 1-933722-48-7

Copyright © 2011 Siegfried Schmitt

All rights reserved.

All rights reserved. This book is protected by copyright. No part of it may be reproduced, stored in a retrieval system or transmitted in any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. Printed in the United States of America.

Where a product trademark, registration mark, or other protected mark is made in the text, ownership of the mark remains with the lawful owner of the mark. No claim, intentional or otherwise, is made by reference to any such marks in the book.

While every effort has been made by the publisher and the author to ensure the accuracy of the information expressed in this book, the organization accepts no responsibility for errors or omissions. The views expressed in this book are those of the editors and authors and may not represent those of either Davis Healthcare International or the PDA, its officers, or directors.

This book is printed on sustainable resource paper approved by the Forest Stewardship Council. The printer, Gasch Printing, is a member of the Green Press Initiative and all paper used is from SFI (Sustainable Forest Initiative) certified mills.

PDA

4350 East West Highway Suite 200 Bethesda, MD 20814 United States www.pda.org/bookstore 301-986-0293 Davis Healthcare International Publishing, LLC

2636 West Street River Grove IL 60171 United States www.DHIBooks.com

CONTENTS

	Preface Glossary	xiii xv
I	Introduction Siegfried Schmitt	I
2	The Regulatory Framework Siegfried Schmitt	5
	The Early Days	5
	PAT and QbD	8
	Pilot Programs	10
	ICH	13
	Quality Implementation Working Group (Q-IWG) Q&A	14
	Design space	15
	Real time release testing (RTRT)	17
	Knowledge management	17
	Lifecycle approach	18
	Benefits of applying ICH Q8, Q9 and Q10	18
	Attendees' understanding of the ICH Guidance Documents	18
		iii

Quality	hv I	Design	— Рі	ıttino 7	heory	into	Practice

iν

	Questions and answers	18
	Current Legislative Situation	20
	Industry Organisations and Their Roles	22
	References	28
	About the Author	30
3	The Roadmap to QbD	3 I
	Siegfried Schmitt	21
	Getting Started	31
	Thought leaders PDA and ISPE	32 33
		33
	Regulatory agencies Conferences and seminars	36
	Online forums an special interest groups	36
	Tools	37
	The Business Case	38
	Design Space	45
	Control strategies	45
	Concept	47
	The relationship between validation and QbD	50
	Link to pharmacokinetics and pharmacodynamics	50
	Examples	52
	Outlook	53
	References	54
	About the Author	
4	Simplified Process Development and Commercialization Girish Malhotra	57
	Introduction	57
	Chemistry	58
	Physical Properties	60
	Consideration of Process Alternates for Process Scale Up	66
	Alternative Processing Methods	75
	Phase Separation	80
	Removal of the Reaction Product	81
	Other Considerations	83
	Good Manufacturing Practices	85
	References	87
	About the Author	88

Contents

5	Change Management Associated with					
	QbD Implementation	89				
	Michael Schousboe and Irwin Hirsh					
	Introduction	89				
	Putting theory into practice	90				
	Discovering QbD as a Concept	91				
	Lessons from PAT implementation projects (2004–2006)	92				
	Focus started with the future state of validation	92				
	Management realization of the need for implementation	93				
	Setting up the Implementation Project	93				
	Realizing that you cannot eat the entire elephant in					
	one bite — multi-step planning	94				
	Choosing implementation strategy — managing the change	95				
	Understanding that creates clarity — getting to the					
	definition of QbD	96				
	Securing buy-in and gathering the project group	97				
	Selling QbD Implementation — Creation of a Strong Business Case	101				
	The basic case for quality risk management	101				
	Quality by redesign — and a mini-paradigm shift	103				
	The high science approach — process understanding					
	that enables control	105				
	The QbD business case for our entire industry	107				
	Realization — Results from a Focused Implementation	109				
	QbD becomes a strategic focus in CMC development	109				
	Securing the competences for QbD lifecycle management	110				
	Working with the quality management system	111				
	Concluding Remarks	112				
	References	113				
	About the Authors	114				
6	QbD and Process Validation — Complementary Lifecycle Approaches	115				
	Paul L. Pluta					
	Introduction	115				
	QbD Basics	117				
	QbD vs. QbT	118				
	Process Validation Basics	119				
	Stage I Process Design — understanding the product					
	and process	120				
	Stage 2 Process Qualification — manufacturing the					
	validation conformance lots	120				

Stage 3 Continued Process Verification — maintaining	
the validated state	121
The "process" of process validation	121
Lifecycle approach to process validation —	
organizational approach	121
Quality risk management	122
Terminology	123
Basis and Expectations for the Lifecycle Approach	
to Process Validation	123
Expectations for validated processes	127
QbD and Process Validation Stage 1 — Process Design	127
Design and development	129
Quality target product profile	129
API and excipient pharmaceutics	130
Quality attributes	131
Formulation and process development	131
Process parameters	132
Design space	132
Pilot scale, technology transfer, and commercial scale-up	133
Identification of input variables	133
Strategy to control variables	134
QbD and Process Validation Stage 2 — Process Qualification	135
Considerations prior to process performance	136
Lifecycle approach to process validation	136
Validation process performance = confirmation	136
Collaboration — function roles and responsibilities	137
Pre-process performance documents	137
VMP and site policy documents	138
Process understanding documents specific to the	
product/process to be validated	138
Validation plan for specific process validation	139
Validation protocol	141
Manufacturing batch record	142
Manufacturing of PPQ lots	142
Communication	143
Preparation for process validation	143
PPQ batch manufacturing	144
Post-process performance documents	144
Executed manufacturing batch record	145
Conformance lots test results	145
Validation performance final report	145
Amendments and mistakes	146
Plan for maintaining the validated state	146

Contents	vii
QbD and Process Validation Stage 3 — Continued Process	
Verification	146
Factors supporting maintenance of the validated state	147
Lifecycle approach to process validation	1 4 8
Functional group collaboration — roles	
and responsibilities	148
Quality systems development and implementation	148
Resource allocation	150
Management responsibilities	150
Risk analysis of product and associated processes	151
Activities for maintaining the validated state	152
Trend and assess data	152
Change management and control	153
Periodic evaluation	154
Additional Process Validation Considerations	154
Equipment/facilities/utilities qualification	154
Analytical methods	155
Statistical methods	155
Documentation	156
Summary and Conclusions	157
References	159
About the Author	162
The Analytical Challenge in QbD — From Data to Information and to Knowledge — From (Bioprocess)	
Development to Manufacturing	163
Christoph Herwig	
Introduction	163
Information and Knowledge Needs in Development	
and Manufacturing	164
What is process understanding?	164
What entities are gathered, what do we measure?	164
Process Development Phases: Goals and Data Needs	166
Early screening	167
Quantitative screening	167
Bioprocess development	167
Piloting	168
Instrumentation Impact: Sensors in Biopharmaceutical	
Processes	170
Data Consistency, Soft Sensors and Extraction of Information	173
Information from raw data	173

7

	Influence of measurement accuracy and frequency on	
	extraction of information	173
	Variables reflecting information	175
	Knowledge-based methods	176
	Analytical methods	177
	Application of the hybrid method approach	181
	Real-time Approaches for Deriving Information and Knowledge:	
	Process Understanding	182
	DoE set-up	182
	Scale-down models and metabolic modelling	182
	Knowledge generation cycle	183
	From Development to Manufacturing	183
	Generic strategy	183
	Requirements for data management	188
	Pharmaceutical development	188
	Generating a business process for knowledge	
	management	189
	Conclusions	189
	References	190
	About the Author	194
8	Applying QbD Design to Pharmaceutical Microbiology Jeanne Moldenhauer	195
	What is Pharmaceutical Microbiology?	195
	Introduction	196
	Applying a QbD Approach for Analytical Methods	199
	Method development	199
	Method validation or qualification	199
	Method transfer, if required	200
	Method use or operation	200
	Lifecycle management	200
	Applying QbD to Pharmaceutical Microbiology Analytical Methods	201
	Applying QbD to Pharmaceutical Microbiology	203
	Getting Regulatory Flexibility	204
	Conclusion	214
	References	214
	About the Author	215

Contents ix

•	The QbD Challenge for Analytical Laboratories Terry Hopper	217
	Introduction	217
	Quality Programs and QbD	219
	The Analytical Laboratory and QbD	222
	Reliability of the analytical laboratory examples	225
	Laboratory error	227
	Operational analysis of the analytical laboratory by QbD SPC/SQC and continuous improvement in the	229
	analytical laboratory	233
	Monitoring and reducing laboratory error	237
	Summary	243
	QbD for Analytical Methods	244
	Overview of design of experiments	249
	DoE approach for a HPLC method example	252
	DoE for analytical methods examples	253
	Automated methods	261
	Quality function deployment	261
	Summary	266
	Space Structures in QbD	267
	Knowledge space	272
	Summary	274
	Developing QbD in the Analytical Laboratory	274
	Conclusions	283
	References	284
	About the Author	285
10	Compliance by Design (CbD) and Compliance Master Plan (CMP) — Lifecycle Approach to	
	Quality Systems and Compliance	287
	Paul L. Pluta, Richard Poska and Timothy J. Fields	
	Introduction — Can Pharmaceutical Compliance be Improved?	287
	Quality systems and GMPs	288
	Approaches and Methods to Improve Compliance and	
	Quality Systems	289
	Quality by Design (QbD)	290
	Process Analytical Technology (PAT)	291
	Risk analysis	291
	Process validation lifecycle approach	292
	Validation Master Plan (VMP)	292
	Quality by Design (ObD) and Compliance by Design (CbD)	292

CbD design and objectives CbD critical compliance parameters

CbD variables control strategy

П

CbD monitoring and maintenance	295
Associated concepts — PAT and risk analysis	295
Process Validation Lifecycle Approach and Quality Systems	
Lifecycle Approach	296
Validation Master Plans (VMP) and Compliance Master	
Plans (CMP)	296
CbD/CMP Implementation Strategy and Approach	298
CbD implementation process	298
Example: material system business process	300
Material system subsections	301
Subsection analysis and evaluation	301
Performance measurement	301
CMP implementation process	305
CbD/CMP Implementation Benefits — Why Implement CbD/CMP?	305
Organized and comprehensive focus on quality systems	
and compliance	305
Cross-function thinking	306
Consistent prioritized mitigation activities across functions	306
Proactive variation identification and control strategy	306
Standardized audit expectations and documentation	307
Centralized tracking of commitments	307
Organization commitment, transparency, and credibility	307
CbD/CMP Implementation — Practical Advice	308
How to successfully implement CbD/CMP	308
How not to implement CbD/CMP	309
Conclusions	310
References	311
About the Authors	313
The Regulatory Perspective for Small Molecules	
Related to Variations	315
Salma Michor	
Regulatory Information — CTD/eCTD	315
Format of the CTD	316
Module I	317
Module 2	317
Module 3 — the quality section (M4Q)	317
Module 4 — the safety section (M4S)	318

293 294

294

	Contents	xi
	Module 5 — the efficacy section (M4E)	318
	Handling of Variations	318
	Quality system elements	319
	Change management	319
	Regional aspects	321
	QbD and Regulatory Information	323
	Location of information	323
	Design space and variations	324
	Conclusion	324
	References	325
	About the Author	326
12	Role of the University in Teaching QbD Siegfried Schmitt	327
	About the Author	334
Ind	ex	335

PREFACE

The global pharmaceutical industry has experienced great advances in development and control of pharmaceutical products in the recent past. Quality by Design (QbD) has been at the forefront of this effort. The QbD concept became widely known during the 2000s and has evolved to emphasize and clarify the most important elements of new product development. QbD emphasizes product and process understanding with technical focus based on risk analysis. QbD has integrated established and reliable methods (e.g., DOE) with newer concepts such as design space, critical quality attributes (CQAs), critical process parameters (CPPs), and critical material attributes (CMAs). QbD has encouraged a proactive approach to identification and control of variation. The QbD initiative has successfully organized and structured these methods and applied them throughout the entire product lifecycle in a logical systematic approach.

The pharmaceutical scientific community has responded to the QbD initiative through professional association collaborations and as individuals in publishing conceptual approaches, methods, and research. This effort has resulted in clarified QbD approaches, more sophisticated new product development, and technical innovations. QbD has facilitated implementation of technology that is now commonplace in the pharmaceutical manufacturing environment. The QbD approach has evolved from origins in small molecule dosage form development to applications far beyond its original scope. Opinion leaders now espouse the QbD approach to small molecule and biotech API manufacturing, analytical

methods, pharmaceutical microbiology, computer systems, and various quality system compliance applications. Such widespread application clearly demonstrates that QbD has evolved and is accepted as a proven strategic methodology.

The publication of *Quality By Design* — *Putting Theory into Practice* by Dr. Siegfried Schmitt and coauthors is appropriate, relevant, and timely. Many of the initial questions and concerns raised with QbD have been resolved. Several pilot development programs with regulatory submissions have been completed. Experiences have been communicated at international forums. The industry is now poised for increasing implementation of QbD methods. A compilation of the background, regulatory guidances, strategies and approaches, experiences, and applications of QbD will be a useful and relevant resource in support of this next phase of QbD implementation.

Quality By Design — Putting Theory into Practice is a comprehensive reference on QbD useful to new and experienced professionals in regulated industries. Further, it is a "how-to" book with useful and practical advice. This book provides a thorough and complete treatise on the subject including potential applications beyond the original scope of QbD. The regulatory basis of QbD including international guidance documents are discussed. Several chapters discuss various aspects of implementation including organizational considerations, business issues, connection to associated disciplines, and related concerns are presented. An organizational decision to implement QbD is a significant undertaking; these chapters provide practical direction. Chapters on applications of QbD principles to the bioprocess development, analytical laboratory and analytical methods, and to pharmaceutical microbiology demonstrate the utility of the QbD methodology. Aspects of QbD in CTD regulatory submissions are discussed. The volume ends with discussion of the role of the university in teaching QbD and associated content.

Readers of *Quality By Design* — *Putting Theory into Practice* will find this book to be greatly valuable. This book provides comprehensive information that is clearly written and well-referenced. Chapter authors are knowledgeable and experienced. Readers will learn the philosophy and fundamentals of QbD, know its history, understand regulatory status, appreciate the scope of implementation, develop a lifecycle perspective, and see many possible applications in their organizations. Discussion topics providing author experiences are extremely useful. Readers of this book will be well-prepared for the future direction of the development, manufacturing, quality, regulatory, and associated areas in the global pharmaceutical industry.

Siegfried Schmitt