## CLEANING AND CLEANING VALIDATION

### VOLUME 2



Paul L. Pluta Editor

### CONTENTS

Introduction

xxix

### SECTION ONE CLEANING VALIDATION BASICS AND EXPECTATIONS

| I I | LIFECYCLE APPROACH TO CLEANING VALIDATION                         | 3  |
|-----|-------------------------------------------------------------------|----|
|     | Paul L. Pluta                                                     |    |
|     | Introduction                                                      | 3  |
|     | Lifecycle Approach to Process Validation                          | 4  |
|     | Stage I — Process design — product/process knowledge              |    |
|     | and understanding                                                 | 6  |
|     | Stage 2 — Process qualification — validation performance          | 6  |
|     | Design of a facility and qualification of utilities and equipment | 7  |
|     | PPQ                                                               | 8  |
|     | PPQ protocol                                                      | 8  |
|     | PPQ protocol execution and report                                 | 8  |
|     | Stage 3 — Continued process verification — maintaining            |    |
|     | the validated state                                               | 9  |
|     | Documentation                                                     | 10 |
|     | Analytical methods                                                | 10 |
|     | Lifecycle Approach Strategy and Applications                      | 10 |
|     | QbD and ICH                                                       | 11 |

| QbD                                                                 | 12 |
|---------------------------------------------------------------------|----|
| ICH guidances                                                       | 12 |
| Validation terminology                                              | 12 |
| Lifecycle Approach Application to Cleaning Validation               | 13 |
| QbD and ICH application to cleaning and cleaning validation         | 15 |
| Risk management                                                     | 15 |
| Cleaning Validation Lifecycle Stage 1 — Process Design              | 16 |
| Cleaning method objectives, design, and development                 | 16 |
| Product/process residue to be cleaned                               | 17 |
| Case Study — Cleaning Validation Failure — Unknown High-Performance |    |
| Liquid Chromatography (HPLC) Peaks                                  | 17 |
| Introduction                                                        | 17 |
| Compliance event background                                         | 18 |
| Investigation                                                       | 19 |
| Manufacturing personnel interviews                                  | 20 |
| Technical personnel evaluation                                      | 20 |
| Analytical laboratory personnel comments                            | 20 |
| Discussion                                                          | 20 |
| Technical cleaning and the cleaning procedure                       | 20 |
| Analytical method                                                   | 21 |
| Inspection procedure                                                | 21 |
| CAPA                                                                | 21 |
| Post CAPA — verifying and maintaining validation and performance    | 22 |
| Other actions                                                       | 23 |
| Site approach to cleaning validation                                | 23 |
| Analytical testing changes                                          | 23 |
| Conclusions                                                         | 23 |
| Analytical method selection and development                         | 24 |
| Product matrix for worst-case products                              | 24 |
| Equipment to be cleaned                                             | 24 |
| Equipment materials with product contact                            | 24 |
| Equipment product-contact surface areas measurement                 | 25 |
| Equipment worst-case sampling locations                             | 25 |
| Worst-case and equivalent equipment                                 | 25 |
| Cleaning agent                                                      | 25 |
| Cleaning process                                                    | 26 |
| Laboratory scale, pilot scale, technology transfer, and             |    |
| commercial scale-up                                                 | 26 |
| Cleaning equipment                                                  | 26 |
| Identification and control of variables                             | 26 |
| Analytical methods                                                  | 27 |
| Residue determination                                               | 27 |
| Recovery studies                                                    | 27 |
| Sampling                                                            | 27 |
| Cleaning Validation Lifecycle Stage 2 — Process Qualification       | 27 |
| Considerations prior to cleaning process performance                | 28 |
| Completion of stage I technical development work                    | 29 |
| Master cleaning procedure record                                    | 29 |

### Contents

| Pre-PPQ documents                                                      | 30 |
|------------------------------------------------------------------------|----|
| Cleaning procedure records for conformance lots                        | 30 |
| Validation initiation/plan and validation protocol for specific        |    |
| cleaning process validation                                            | 30 |
| PPQ cleaning performance                                               | 31 |
| Preparation for cleaning validation                                    | 31 |
| Conformance lot cleaning — execution of cleaning                       |    |
| procedure record                                                       | 31 |
| Conformance lots sampling and testing                                  | 31 |
| PPQ results                                                            | 31 |
| Cleaning Validation Lifecycle Stage 3 — Continued Process Verification | 32 |
| Process monitoring and maintenance                                     | 32 |
| Annual product review data                                             | 33 |
| Post-PQ special testing requirements                                   | 34 |
| Change management and control                                          | 34 |
| Periodic management review                                             | 34 |
| Documentation                                                          | 34 |
| Scope of cleaning validation documentation                             | 35 |
| High level policy documents                                            | 35 |
| Cleaning validation lifecycle documents                                | 35 |
| Other applicable documents                                             | 36 |
| Documentation consistency                                              | 37 |
| Document quality                                                       | 37 |
| Document retrieval                                                     | 38 |
| Summary and Final Thoughts                                             | 38 |
| References                                                             | 38 |
| About the Author                                                       | 39 |

### SECTION TWO GENERAL TECHNICAL PRINCIPLES — CLEANING CHEMISTRY AND ENGINEERING

| 2 | EQUIPMENT DESIGN CONSIDERATIONS FOR<br>CLEANING AND CLEANING VALIDATION | 43 |
|---|-------------------------------------------------------------------------|----|
|   |                                                                         | 43 |
|   | Gamal Amer                                                              |    |
|   | Introduction                                                            | 32 |
|   | Lifecycle approach to cleaning validation stage 1 —                     |    |
|   | design and development                                                  | 44 |
|   | Lifecycle approach to cleaning validation stage $2-$                    |    |
|   | performance qualification                                               | 44 |
|   | Lifecycle approach to cleaning validation stage 3 —                     |    |
|   | continued process verification                                          | 44 |
|   | Equipment Types                                                         | 45 |
|   | Off-the-shelf equipment                                                 | 45 |
|   | Custom or unique equipment                                              | 45 |

| Design Issues and Considerations for Cleaning                        | 46 |
|----------------------------------------------------------------------|----|
| How toxic/potent is the residue to be cleaned?                       | 46 |
| How difficult to clean is the residue?                               | 47 |
| How will the equipment be cleaned?                                   | 47 |
| Manual cleaning                                                      | 47 |
| Automated cleaning                                                   | 48 |
| Semi-automated cleaning                                              | 48 |
| Where will the equipment be cleaned?                                 | 48 |
| Clean-in-place                                                       | 49 |
| Clean remotely                                                       | 49 |
| General Design Considerations                                        | 50 |
| Material of construction and surface finish                          | 50 |
| Equipment disassembly                                                | 51 |
| Access                                                               | 51 |
| Lighting                                                             | 51 |
| Visual inspection                                                    | 52 |
| Sampling ports                                                       | 52 |
| Disposable components                                                | 52 |
| Sharp corners                                                        | 52 |
| Gaskets and connections                                              | 53 |
| Piping                                                               | 53 |
| Piping angles                                                        | 53 |
| Slanted surfaces                                                     | 53 |
| Documentation Supporting Validation and Daily Operation              | 53 |
| User requirements document                                           | 54 |
| Equipment specifications                                             | 54 |
| Engineering and design drawings                                      | 54 |
| Operation and Maintenance (O&M) manual                               | 55 |
| Cleaning procedures                                                  | 55 |
| Equipment cleaning log                                               | 55 |
| Equipment certifications                                             | 55 |
| Material Safety Data Sheets (MSDS)                                   | 56 |
| Testing of the Equipment                                             | 56 |
| Spray testing                                                        | 56 |
| Leak tests                                                           | 56 |
| Weld verification                                                    | 56 |
| Equipment qualification                                              | 56 |
| Swab testing                                                         | 57 |
| Summary                                                              | 57 |
| References                                                           | 57 |
| About the Author                                                     | 57 |
| Appendix: Checklist for Equipment Design Considerations for Cleaning | 58 |

| 3 | EQUIPMENT SAMPLING LOCATIONS AND SAMPLING METHODS |
|---|---------------------------------------------------|
|   | FOR CLEANING VALIDATION                           |
|   |                                                   |

| Paul L. Pluta                                                     |    |
|-------------------------------------------------------------------|----|
| Introduction                                                      | 59 |
| Importance of Equipment Sampling Locations and Sampling Methods   | 60 |
| Risk Analysis for Sampling Locations and Methods                  | 61 |
| Regulatory Requirements and Industry Expectations                 | 62 |
| Sampling Locations on Equipment                                   | 64 |
| Sampling locations in areas of possible non-uniform contamination |    |
| in the next product                                               | 64 |
| Sampling locations in most difficult-to-clean areas of equipment  | 65 |
| Sampling locations representative of entire equipment surfaces    | 65 |
| Sampling locations that accumulate maximum process residue        | 65 |
| Sampling locations that have maximum product contact              | 66 |
| Sampling locations for specific product-contact material          | 66 |
| Random sampling locations                                         | 66 |
| Sampling locations for non-product–contact surfaces               | 66 |
| Sampling locations most likely to be re-contaminated              | 67 |
| Sampling Methods                                                  | 67 |
| Swab sampling                                                     | 67 |
| Rinse sampling or solvent sampling                                | 68 |
| Fixed volume rinse sampling                                       | 68 |
| "Grab" rinse sampling                                             | 68 |
| Placebo sampling or product sampling                              | 69 |
| Coupon sampling                                                   | 69 |
| Direct surface sampling                                           | 69 |
| Approach for Selection of Sampling Locations and Sampling Methods | 69 |
| Equipment technical evaluation                                    | 70 |
| Observation of equipment after processing                         | 70 |
| Equipment disassembly review                                      | 70 |
| Cleaning procedure review                                         | 71 |
| Cleaning actual experience                                        | 72 |
| Recommendations for Sampling Locations and Sampling Methods       | 72 |
| Sampling locations                                                | 72 |
| Recommended sampling locations                                    | 72 |
| Optional sampling locations                                       | 72 |
| Other sampling locations                                          | 72 |
| Special applications                                              | 72 |
| Sampling methods                                                  | 73 |
| Experimental studies                                              | 73 |
| Visually Clean Requirements                                       | 73 |
| Documentation and Procedures                                      | 73 |
| Procedure to evaluate sampling locations on equipment             | 74 |
| Equipment evaluations                                             | 74 |
| Equipment sampling procedures for cleaning validation             | 74 |
| Change Control                                                    | 75 |
| Summary and Conclusions                                           | 75 |
| About the Author                                                  | 77 |
|                                                                   |    |

59

| Appendix 1: Regulatory Guidances and Industry Expectations for |    |
|----------------------------------------------------------------|----|
| Cleaning Validation Sampling and Test Methods                  | 77 |
| Appendix 2: Cleaning Validation Equipment Sampling Location    |    |
| Determination — Cleaning Personnel Interview                   | 84 |
| Appendix 3: Sampling Procedure Template                        | 85 |
| Appendix 4: Example Sampling Procedures                        | 88 |

Allan Marinelli and Cor Alleblas

### 4 PROCEDURE FOR SPRAY COVERAGE TESTING WITH RIBOFLAVIN

91

| Introduction                                                          | 91  |
|-----------------------------------------------------------------------|-----|
| Sprayball Overview                                                    | 92  |
| Testing Sprayball Coverage using Riboflavin                           | 93  |
| Procedure for Sprayball Coverage Testing                              | 94  |
| Sprayball Design, Acceptance, and Installation                        | 96  |
| Sprayball system design                                               | 96  |
| Qualification                                                         | 96  |
| Pre-validation                                                        | 97  |
| Riboflavin spray device                                               | 98  |
| Equipment to be Cleaned                                               | 98  |
| Equipment design                                                      | 99  |
| Identification of hard-to-clean locations                             | 99  |
| Equipment to be cleaned by riboflavin testing                         | 99  |
| Riboflavin Solution Preparation and Application to Equipment Surfaces | 100 |
| Riboflavin solution                                                   | 100 |
| Riboflavin spray coverage                                             | 100 |
| Riboflavin solution drying                                            | 101 |
| Rinsing/Cleaning                                                      | 101 |
| Worse-case cleaning process                                           | 101 |
| Rinsing/cleaning                                                      | 102 |
| Manual method (non-CIP)                                               | 102 |
| Manual method using CIP skid                                          | 103 |
| Automated method using CIP system                                     | 105 |
| Spray Coverage Evaluation                                             | 105 |
| Post rinsing/cleaning verification                                    | 105 |
| Action items and closure                                              | 106 |
| Lessons Learned                                                       | 107 |
| What to do when Issues are Found? How to Change/Correct?              | 107 |
| Parts covered by sprayball not adequately rinsed of riboflavin        | 107 |
| Shadowing — all top nozzles not adequately rinsed of riboflavin       | 107 |
| Nozzles incompletely flushed                                          | 108 |
| Pooling in vessel — bottom of vortex breaker or                       |     |
| bottom nozzle not free of riboflavin                                  | 108 |
| Drip locations of baffle not free of riboflavin                       | 108 |
| Bottom-mounted agitator spindle not free of riboflavin                | 108 |

| Agitator blades not free of riboflavin | 108 |
|----------------------------------------|-----|
| Solution drainage                      | 108 |
| Manway cleaning                        | 109 |
| If problems persist                    | 109 |
| Other comments                         | 109 |
| References                             | 110 |
| About the Authors                      | 110 |
|                                        |     |

| 5 | MISCELLANEOUS EQUIPMENT CLEANING TOPICS | 111 |
|---|-----------------------------------------|-----|
|   | Destin A. LeBlanc                       |     |
|   | Introduction                            | 111 |
|   | Cleaning for Dedicated Equipment        | 111 |
|   | Cleaning for Campaigns                  | 114 |
|   | Cleaning After Deviations               | 118 |
|   | Cleaning After Interventions            | 120 |
|   | New Equipment Cleaning                  | 122 |
|   | References                              | 123 |
|   | About the Author                        | 124 |
|   |                                         |     |

### SECTION THREE GENERAL TECHNICAL PRINCIPLES — RESIDUES

### 6 POLYMER RESIDUE CLEANING METHOD DEVELOPMENT: CASE STUDY

| DEVELOPMENT: CASE STUDY                                            | 127 |
|--------------------------------------------------------------------|-----|
| Dijana Hadziselimovic and Paul Lopolito                            |     |
| Introduction                                                       | 127 |
| Properties of Carbomer Molecules                                   | 131 |
| Critical Parameters for Cleaning and Laboratory Studies            | 132 |
| Selection of Carbomers                                             | 133 |
| Laboratory Procedure                                               | 133 |
| Effect of Cleaning Agent, Concentration, Time and Temperature      | 137 |
| Effect of Cleaning Method, Pre-Rinse and Quality of Water          | 137 |
| Effect of Soil Load                                                | 139 |
| Effect of Application Condition                                    | 140 |
| Cleaning Evaluation of Various Carbomers                           | 4   |
| Manual Cleaning Recommendations for the Various Forms of Carbomers | 142 |
| Cleaning Recommendations for Various Final Dosage Forms            |     |
| Containing Carbomers                                               | 143 |
| Conclusions                                                        | 144 |
| References                                                         | 145 |
| About the Authors                                                  | 146 |

| CLEANING AND CONTAMINATION CONTROL                             |     |
|----------------------------------------------------------------|-----|
| IN MEDICAL DEVICES                                             | 147 |
| Barbara Kanegsberg and Edward Kanegsberg                       |     |
| Introduction                                                   | 147 |
| What Is Critical Cleaning?                                     | 148 |
| Cleaning Philosophy                                            | 149 |
| Medical Device Definitions and US Regulations                  | 150 |
| Class I devices                                                | 151 |
| Class II devices                                               | 151 |
| Class III devices                                              | 151 |
| Challenges                                                     | 151 |
| Soil Removal                                                   | 151 |
| Cleaning Processes                                             | 152 |
| Steps in the cleaning process                                  | 152 |
| Washing                                                        | 153 |
| Rinsing                                                        | 153 |
| Drying                                                         | 153 |
| Cleaning Agent Selection                                       | 153 |
| Why so many different cleaning agents?                         | 153 |
| Solvency — water and isopropyl alcohol (IPA) may not be enough | 154 |
| Materials compatibility                                        | 156 |
| Leachable residue                                              | 156 |
| Residue toxicity                                               | 156 |
| Surface quality                                                | 156 |
| Beneficial contamination                                       | 157 |
| Cleaning Process Selection — Types of Cleaning Processes       | 158 |
| Cleaning Process Validation                                    | 161 |
| A customized validation plan                                   | 161 |
| Surface characterization and residue determination             | 162 |
| Supply Chain Quality                                           | 164 |
| Metalworking fluids                                            | 165 |
| Cleaning responsibility                                        | 165 |
| Combination Devices — Special Challenges                       | 166 |
| Reusable Devices                                               | 167 |
| FDA Guidance                                                   | 168 |
| Conclusions                                                    | 169 |
| References                                                     | 169 |
| About the Authors                                              | 172 |

| 8 | CHARACTERIZATION OF PROTEIN RESIDUES       | i                     |
|---|--------------------------------------------|-----------------------|
|   | AFTER CLEANING                             | 175                   |
|   | Alfredo J. Canhoto, Kathleen Bellorado and | Michael Kreuze        |
|   | Introduction                               | 175                   |
|   | Proteins and relevant chemistry            | 176                   |
|   | Analytical methodology                     | 177                   |
|   | Experimental Approach                      | 177                   |
|   | V                                          | vww.pda.org/bookstore |

| Materials and Methods                 | 178 |
|---------------------------------------|-----|
| Cleaning agents                       | 178 |
| API soils                             | 178 |
| Materials/equipment list              | 180 |
| SDS-PAGE solutions                    | 181 |
| Experimental procedures               | 181 |
| Working concentration determination   | 181 |
| Running gels                          | 181 |
| Staining/destaining gels              | 182 |
| Analysis of gels in with densitometer | 182 |
| Degradation experiments               | 183 |
| Results                               | 183 |
| Effect of acidic cleaning agent       | 184 |
| Effect of alkaline cleaning agent     | 185 |
| Effect of acidic cleaning agent       | 186 |
| Summary of cleaning agent effects     | 186 |
| Discussion                            | 188 |
| Conclusions                           | 189 |
| References                            | 190 |
| About the Authors                     | 190 |

#### MASTER SOILS FOR CLEANING CYCLE DEVELOPMENT 9 AND VALIDATION: CASE STUDY 191 Rizwan Sharnez 191 Introduction Criteria for Developing a Master Soil 192 Case Study: Master Soil Development 192 **Experimental Approach** 193 Acceptance criterion 194 Materials and methods 194 Chemicals 194 195 Apparatus Coupons 195 195 Soils Microbalance 195 195 Oven Procedure 195 Pre-cleaning and soiling of coupons 195 196 Simulated wash cycle 196 Post-cleaning analysis 196 Results Step I data 196 Step 2 data 197 Conclusion 198 199 References 200 About the Author www.pda.org/bookstore

xi

### SECTION FOUR SPECIFIC RESIDUES FOR CLEANING

| 10 | CLEANING PROGRAMS FOR MANUFACTURERS FOR APIs                        | 203 |
|----|---------------------------------------------------------------------|-----|
|    | William E. Hall                                                     |     |
|    | Introduction                                                        | 203 |
|    | Regulatory Requirements                                             | 203 |
|    | The Actual "Cleaning Program"                                       | 205 |
|    | Risk assessment — a good starting point                             | 205 |
|    | Creation of a master plan or a "working" master plan                | 207 |
|    | Multiple-level approach to cleaning                                 | 209 |
|    | Campaign versus complete changeover cleanings                       | 209 |
|    | Unique Nature of Active Pharmaceutical Ingredients                  | 210 |
|    | Nature of contaminants                                              | 210 |
|    | Sources of information                                              | 211 |
|    | Sources of contamination — two examples                             | 213 |
|    | Viracept                                                            | 213 |
|    | Cholestyramine resin                                                | 213 |
|    | Cleaning Agents                                                     | 214 |
|    | Traditional cleaning agents                                         | 214 |
|    | Solvents as cleaning agents                                         | 214 |
|    | Calculation of Scientifically Acceptable Maximum Allowable Residues | 214 |
|    | Therapeutic dose approach                                           | 214 |
|    | No Observed Effect Level (NOEL) approach                            | 215 |
|    | Highly Potent APIs and the Concept of Containment                   | 215 |
|    | Sampling and Analytical Considerations                              | 216 |
|    | Analytical methods                                                  | 217 |
|    | Difficult to clean areas, surfaces, and recovery studies            | 217 |
|    | Documentation of Cleaning in an API Facility                        | 217 |
|    | Basic routine documentation                                         | 217 |
|    | Validation documentation                                            | 218 |
|    | Quality system documentation                                        | 218 |
|    | Training records                                                    | 218 |
|    | References                                                          | 219 |
|    | Case Study # I: Understanding Residue Chemistry                     | 220 |
|    | Case Study # 2: Inadequate Cleaning in Campaigns                    | 221 |
|    | Case Study # 3: Manual Cleaning Problems                            | 221 |
|    | About the Author                                                    | 222 |

# II VACCINE RESIDUES — CELL CULTURE MANUFACTURING 223 AND CLEANING 223 Vivienne Yankah 224 Mechanism of action of vaccines 225 Active immunization vaccines 225

| Passive immunization vaccines                             | 225 |
|-----------------------------------------------------------|-----|
| Vaccine Processing Technologies                           | 227 |
| Cell culture vaccines                                     | 227 |
| Cell bank                                                 | 227 |
| Cell growth propagation and harvesting                    | 228 |
| Inactivation                                              | 228 |
| Detoxification                                            | 228 |
| Purification                                              | 228 |
| Stability processing                                      | 229 |
| Animal source for cell propagation                        | 229 |
| Adenovirus                                                | 230 |
| Others                                                    | 230 |
| DNA vaccines                                              | 230 |
| Plant-based vaccines                                      | 230 |
| Vaccine Formulation Ingredients                           | 231 |
| Characteristics for selection of vaccine ingredients      | 231 |
| Stabilizing agents                                        | 233 |
| Preservatives                                             | 233 |
| Adjuvants                                                 | 233 |
| Adjuvant mechanism of action                              | 234 |
| Residues in Typical Manufacturing Processes               | 235 |
| Fermentation residues                                     | 236 |
| Purification residues                                     | 236 |
| Formulation residues                                      | 236 |
| Typical Equipment and Manufacturing Processes             | 236 |
| Equipment design                                          | 237 |
| Equipment procurement                                     | 237 |
| Cleaning equipment                                        | 238 |
| Automated CIP systems                                     | 238 |
| Semi-automated cleaning stations                          | 238 |
| Manual cleaning                                           | 238 |
| Cleaning equipment qualification                          | 239 |
| Factory Acceptance Testing                                | 239 |
| Installation Qualification                                | 239 |
| Operational Qualification                                 | 239 |
| Performance Qualification                                 | 239 |
| Coupon studies                                            | 240 |
| Cleaning Agents and Equipment Cleaning Procedures         | 240 |
| Basic operations of the cleaning process                  | 241 |
| Cleaning validation                                       | 242 |
| Planning validation strategy for cleaning design based on |     |
| manufacturing process                                     | 242 |
| Setting limits for acceptance criteria                    | 243 |
| Soil categories and the cleaning process                  | 243 |
| Live soil cleaning process                                | 243 |
| Non-live soil cleaning process                            | 244 |
| Identifying sampling locations                            | 244 |
| Equipment hold times                                      | 244 |

xiii

| Dirty hold time                            | 245 |
|--------------------------------------------|-----|
| Clean hold time                            | 245 |
| Sterile hold                               | 245 |
| Overcoming hold time excursions            | 245 |
| Challenges of Cleaning Equipment Types     | 246 |
| Chromatography systems                     | 246 |
| Bioreactor                                 | 247 |
| Centrifuges                                | 247 |
| Tangential Flow Filtration                 | 247 |
| Small equipment parts and hoses            | 248 |
| Quality Attributes and Acceptance Criteria | 248 |
| Sampling                                   | 248 |
| Swab samples                               | 249 |
| Rinse samples                              | 249 |
| Visual inspection                          | 249 |
| Analytical test markers                    | 251 |
| Total Organic Carbon                       | 251 |
| Bacterial Endotoxin Test                   | 251 |
| Protein                                    | 251 |
| Conductivity                               | 251 |
| рH                                         | 252 |
| Test method validation                     | 252 |
| Recovery studies                           | 252 |
| Documentation                              | 253 |
| Documentation for cleaning validation      | 253 |
| Documentation for routine cleaning         | 253 |
| Training for Cleaning Validation           | 253 |
| Continuous Improvement                     | 254 |
| Quality by Design                          | 254 |
| Process Analytical Technology              | 254 |
| Continuous monitoring                      | 255 |
| Validation maintenance                     | 255 |
| Summary                                    | 255 |
| References                                 | 256 |
| About the Author                           | 258 |

### 12 BIOTECH MANUFACTURING CLEANING VALIDATION: CASE STUDIES

| Michael Parks and Brian J. Lloyd                    |     |
|-----------------------------------------------------|-----|
| Introduction                                        | 259 |
| Case Study #1: Atypical Product Residue             | 260 |
| Background                                          | 261 |
| Residue analysis                                    | 261 |
| Cleaning cycle analysis                             | 261 |
| Laboratory studies                                  | 262 |
| Cleaning process changes — short term and long term | 262 |
|                                                     | /1  |

www.pda.org/bookstore

259

| Overcoming process variation                                       | 263 |
|--------------------------------------------------------------------|-----|
| Summary                                                            | 263 |
| Case Study #2: Vessel Visual Inspection for a White Precipitate    | 264 |
| Background                                                         | 264 |
| Residue analysis                                                   | 265 |
| Cleaning cycle analysis and problem solution                       | 265 |
| Summary                                                            | 265 |
| Case Study #3: Bioburden Within a Non-sterile Purification Process | 266 |
| Background                                                         | 267 |
| Initial study                                                      | 267 |
| Expanded study                                                     | 268 |
| Problem-solving approach                                           | 268 |
| Process improvements                                               | 269 |
| Summary                                                            | 270 |
| About the Authors                                                  | 270 |

### 13 CLEANING OF FERMENTATION TANKS FOR MANUFACTURE OF A SMALL MOLECULE API: CASE STUDY

273

| Michael J. Egan and Thomas J. Paulus      |     |
|-------------------------------------------|-----|
| Introduction                              | 273 |
| Cleaning objective                        | 274 |
| Fermentor Equipment Component and Process | 274 |
| Fermentation Process Residue              | 274 |
| Fermentor Steam Sterilization             | 274 |
| Fermentor Chemical Cleaning               | 275 |
| Raw material assessment                   | 275 |
| Typical Fermentor Cleaning Process        | 275 |
| Summary                                   | 276 |
| About the Authors                         | 276 |

### 14 ASEPTIC PARENTERAL PRODUCTS -**RESIDUES AND CLEANING** 279 Valerie Welter 279 Introduction **Product Types** 280 280 Formulation Ingredients 281 Typical ingredients Equipment and Manufacturing Process 282 Equipment 282 Equipment terminology 283 Cleaning of dedicated/captive product contact equipment 284 Cleaning of direct product contact equipment 284 284 Cleaning of tanks/vessels

| Cleaning of mixing equipment                                     | 285 |
|------------------------------------------------------------------|-----|
| Cleaning of filtration equipment                                 | 285 |
| Cleaning of miscellaneous small parts                            | 285 |
| Cleaning of permeable materials                                  | 285 |
| Cleaning of advanced aseptic processing environments (isolators) | 286 |
| Typical manufacturing process                                    | 286 |
| Dispensing of formulation ingredients                            | 286 |
| Solution formulation                                             | 288 |
| Transfer to aseptic filling suite                                | 288 |
| Lypholization                                                    | 289 |
| Capping                                                          | 289 |
| Equipment considerations and the impact on cleaning              | 290 |
| Critical sites                                                   | 290 |
| Difficult to clean sites                                         | 290 |
| Representative sites                                             | 290 |
| Residues in a Typical Aseptic Manufacturing Process              | 291 |
| Microbial considerations for aseptic formulations                | 291 |
| Cleaning Agents and Cleaning Procedures                          | 292 |
| Acceptance Criteria for Aseptic Parenteral Products              | 292 |
| Case Studies                                                     | 295 |
| Case study #1: Inadequate characterization of "clean"            | 295 |
| Problem                                                          | 295 |
| Discussion                                                       | 295 |
| Corrective actions                                               | 295 |
| Case study #2: Recovery techniques not adequately defined        | 296 |
| Problem                                                          | 296 |
| Discussion                                                       | 296 |
| Corrective actions                                               | 296 |
| Case study #3: Calculated acceptance criteria below the LOQ      |     |
| of the analytical method                                         | 296 |
| Problem                                                          | 296 |
| Investigation                                                    | 296 |
| Corrective actions                                               | 296 |
| References                                                       | 297 |
| About the Author                                                 | 297 |
|                                                                  |     |

| 15 | CLEANING PROCESS AND VALIDATION FOR MDIs                | 299 |
|----|---------------------------------------------------------|-----|
|    | Michael Taylor, Paul Sullivan, Jay Holt and Li Li Bovet |     |
|    | Introduction                                            | 299 |
|    | MDI Composition and Formulation                         | 300 |
|    | Production Processes and Equipment                      | 300 |
|    | Manufacturing scale                                     | 302 |
|    | Product development scale production                    | 302 |
|    | Small scale production                                  | 302 |
|    | Medium scale production                                 | 302 |
|    | Large scale production                                  | 302 |

| Cleaning Considerations                                      | 303 |
|--------------------------------------------------------------|-----|
| Cleaning agents                                              | 303 |
| Equipment considerations                                     | 303 |
| Specific equipment considerations                            | 305 |
| Tanks                                                        | 305 |
| Impellers                                                    | 306 |
| Recirculation pumps, valves, and lines                       | 306 |
| Canister and valve hoppers/guide tracks                      | 306 |
| Small equipment                                              | 307 |
| Valves and gaskets                                           | 307 |
| Cleaning Validation                                          | 308 |
| Cleaning process                                             | 308 |
| Methanol rinse                                               | 308 |
| HFA-134a rinses                                              | 308 |
| Additional cleaning for comprehensive clean cycles           | 308 |
| Cleaning validation process                                  | 309 |
| Background                                                   | 309 |
| Purpose                                                      | 309 |
| Process description                                          | 309 |
| Cleaning approach                                            | 309 |
| Review of active drug residual limits                        | 309 |
| Sampling methodology                                         | 309 |
| Data analysis                                                | 310 |
| Acceptance criteria for cleaning verification                | 310 |
| Test results                                                 | 310 |
| Conclusion                                                   | 310 |
| Approval signatory                                           | 310 |
| Acceptance criteria                                          | 310 |
| Case Studies                                                 | 311 |
| Case study #1: DH Autocart — an automated solution to enable |     |
| dynamic off-line cleaning in a GMP environment               | 311 |
| Problem                                                      | 311 |
| Investigation                                                | 311 |
| Action                                                       | 311 |
| Conclusion                                                   | 312 |
| Case study #2:Test equipment                                 | 312 |
| Case study #3: Process equipment                             | 312 |
| About the Authors                                            | 313 |

| 16 | TRANSDERMAL PATCHES — RESIDUES AND CLEANII               | NG 315           |
|----|----------------------------------------------------------|------------------|
|    | T.J. Woody and Rashmi S. Upasani                         |                  |
|    | Introduction                                             | 315              |
|    | Transdermal Patch Design, Configurations, and Components | 316              |
|    | Transdermal patch configurations                         | 316              |
|    | Transdermal patch components                             | 317              |
|    | Manufacturing Process and Equipment                      | 318              |
|    | www.p                                                    | da.org/bookstore |

| Residues from Manufacturing Process                 | 319 |
|-----------------------------------------------------|-----|
| Cleaning Agents and Cleaning Procedures             | 319 |
| Cleaning process considerations                     | 320 |
| Dirty hold time                                     | 320 |
| Cans and tanks                                      | 320 |
| Pumps                                               | 320 |
| Equipment disassembly                               | 320 |
| Manual cleaning process                             | 321 |
| Cleaning time                                       | 321 |
| Safety — solvent flammability and explosivity       | 321 |
| General cleaning process                            | 321 |
| Cleaning Quality Attributes and Acceptance Criteria | 322 |
| Safety-based method                                 | 322 |
| Minimum or normal therapeutic dose method           | 323 |
| 10 ppm carryover method                             | 323 |
| Disposables                                         | 324 |
| Case Studies                                        |     |
| Case study #1: Absence of active failure            | 324 |
| Problem                                             | 324 |
| Background information and investigation            | 324 |
| Corrective actions                                  | 324 |
| Conclusion                                          | 324 |
| Case study #2: Mixer cleaning                       | 325 |
| Problem                                             | 325 |
| Investigation                                       | 325 |
| Corrective actions                                  | 325 |
| Conclusion                                          | 326 |
| Summary                                             | 326 |
| References                                          | 326 |
| About the Authors                                   | 327 |

### 17 MEDICAL DEVICE REAGENT PRODUCT RESIDUES AND CLEANING

Robert W. Marshman Introduction 329 329 **Product Types** Assay foundation 330 Products 330 Production Processes and Equipment 330 Active ingredient synthesis 330 Active ingredient isolation 331 Formulation of bulk active ingredient 331 Kit preparation 331 Active Ingredient Synthesis 332 Cell culture 332 332 Fermentation vessels

www.pda.org/bookstore

329

| Hollow fiber cartridges                                | 333 |
|--------------------------------------------------------|-----|
| Spinner flasks and roller bottles                      | 333 |
| Organic synthesis                                      | 333 |
| Active Ingredient Isolation                            | 334 |
| Homogenization                                         | 334 |
| Homogenization equipment                               | 334 |
| Column chromatography and purification equipment       | 334 |
| Dialysis                                               | 335 |
| Diafiltration and concentration                        | 335 |
| Stirred cell                                           | 335 |
| Hollow fiber                                           | 335 |
| Plate and frame                                        | 336 |
| Plasma processing                                      | 336 |
| Formulation of Bulk Active Ingredient                  | 336 |
| Particle coating                                       | 337 |
| Equipment and process residues                         | 337 |
| Bulk reagent formulation                               | 337 |
| Equipment and process residues                         | 337 |
| Kit Preparation                                        | 338 |
| Equipment and process residues                         | 338 |
| Acceptance Criteria for Medical Device Reagents        | 339 |
| Establishment of limits for cleaning                   | 339 |
| Specific equipment limits                              | 339 |
| Cleaning Agents, Cleaning Methods, and Other Variables | 340 |
| Cleaning agents                                        | 341 |
| Cleaning options                                       | 341 |
| Example: cleaning of homogenizers                      | 342 |
| CIP systems                                            | 342 |
| Cabinet washers                                        | 343 |
| COP systems                                            | 346 |
| Equipment-specific procedures                          | 346 |
| Manual procedures                                      | 346 |
| Dedicated equipment                                    | 347 |
| Disposable equipment                                   | 347 |
| Case Studies                                           | 347 |
| Case Study #1: Microbial load reduction                | 347 |
| Issue                                                  | 347 |
| Approach                                               | 347 |
| Challenges                                             | 348 |
| Results                                                | 348 |
| Case Study #2: Tangential flow filter — concentration  | 348 |
| lssue                                                  | 348 |
| Approach                                               | 348 |
| Challenges                                             | 348 |
| Results                                                | 348 |
| Case Study #3: Detergent discontinuation               | 348 |
| lssue                                                  | 348 |

| Approach         | 348 |
|------------------|-----|
| Challenges       | 349 |
| Results          | 349 |
| Reference        | 349 |
| About the Author | 349 |

### SECTION FIVE ANALYSIS OF RESIDUES

| 18 | PROCESS ANALYTICAL TECHNOLOGY                               |     |
|----|-------------------------------------------------------------|-----|
|    | FOR CLEANING SYSTEMS                                        | 353 |
|    | Keith Bader and Peter Watler                                |     |
|    | Overview                                                    | 353 |
|    | Cleaning System Processes                                   | 353 |
|    | Cleaning Process Parameters and Critical Quality Attributes | 354 |
|    | Concentration                                               | 355 |
|    | Cleaning solution temperature                               | 355 |
|    | External energy                                             | 356 |
|    | Time — cleaning duration and contact time                   | 357 |
|    | Cleaning rate for laminar flow                              | 358 |
|    | Cleaning rate in turbulent flow                             | 359 |
|    | Turbulent vs. laminar cleaning rates                        | 360 |
|    | Analytical Methods and Sensors                              | 361 |
|    | Temperature                                                 | 361 |
|    | Flowrate                                                    | 361 |
|    | Conductivity and pH                                         | 361 |
|    | Total Organic Carbon                                        | 362 |
|    | TOC operating principles                                    | 362 |
|    | Interference, pressure, and temperature                     | 362 |
|    | Oxidation and measurement                                   | 363 |
|    | Oxidation                                                   | 363 |
|    | Advanced oxidation                                          | 364 |
|    | Thermal oxidation                                           | 364 |
|    | Chemically-assisted oxidation                               | 365 |
|    | Measurement and detection                                   | 365 |
|    | Conductivity                                                | 366 |
|    | Membrane conductometric                                     | 367 |
|    | Serial conductometric                                       | 368 |
|    | Spectrophotometric detection                                | 369 |
|    | Rapid Microbial Methods                                     | 371 |
|    | Bacterial Endotoxin Testing (BET)                           | 371 |
|    | Adenosin Triphosphate (ATP) bioluminescence                 | 372 |
|    | Optical and spectrophotometric detection methodologies      | 372 |
|    | Summary                                                     | 374 |
|    | Installation and Placement                                  | 374 |

| Location and sample residence time                                | 374 |
|-------------------------------------------------------------------|-----|
| Case studies                                                      | 376 |
| PAT for chromatography column cleaning                            | 376 |
| Column integrity test as PAT forward processing criteria          | 378 |
| Column pressure drop as PAT forward processing criteria           | 381 |
| Product peak HETP as PAT critical quality attribute and forward   |     |
| processing criteria                                               | 383 |
| Product peak asymmetry factor as a PAT critical quality attribute | 385 |
| Product peak retention — resin capacity                           | 386 |
| References and Further Reading                                    | 387 |
| About the Authors                                                 | 390 |

| SWAB SAMPLING FOR CLEANING VALIDATION                    | 393             |
|----------------------------------------------------------|-----------------|
| Sandeep Kalekar and Jay Postlewaite                      |                 |
| Introduction — Why Validate Cleaning?                    | 393             |
| The importance of sampling                               | 394             |
| Sampling Methods                                         | 394             |
| Swab and rinse sampling                                  | 394             |
| Swab Sampling                                            | 395             |
| Selection of the swab                                    | 395             |
| Proper swabbing procedure                                | 396             |
| Training for Swab Sampling                               | 396             |
| Case Studies                                             | 398             |
| Case study #1: False negative cleaning data              | 398             |
| Introduction                                             | 398             |
| Background                                               | 398             |
| Investigation                                            | 399             |
| Discussion                                               | 399             |
| CAPA                                                     | 401             |
| Cleaning validation of modified cleaning process         | 401             |
| Summary                                                  | 401             |
| Case study #2: Cleaning validation sampling with an exte | ension pole 402 |
| Background                                               | 402             |
| Investigation                                            | 403             |
| Discussion                                               | 403             |
| Summary                                                  | 403             |
| Analytical Methods                                       | 404             |
| Total Organic Carbon                                     | 405             |
| High performance liquid chromatography                   | 405             |
| Residue recovery studies                                 | 407             |
| Residue affinity for product-contact surface             | 408             |
| Summary                                                  | 409             |
| References                                               | 409             |
| About the Authors                                        | 410             |

| 20 | SWAB SAMPLING TRAINING AND SAMPLING                           |     |
|----|---------------------------------------------------------------|-----|
|    | PERSON QUALIFICATION                                          | 411 |
|    | Brian P. Huey                                                 |     |
|    | Introduction                                                  | 411 |
|    | Swab Sampling Overview                                        | 412 |
|    | Personnel Sampling Skills                                     | 413 |
|    | Approach to Sampling Person Training and Qualification        | 414 |
|    | Worse-case approach                                           | 414 |
|    | Review of site sampling and analytical methods                | 414 |
|    | Sampling technique                                            | 414 |
|    | Sampling testing                                              | 415 |
|    | Atypical sampling                                             | 415 |
|    | Acceptance criteria                                           | 415 |
|    | Sampling Person Qualification (Certification)                 | 415 |
|    | Failing Sampling Qualification                                | 416 |
|    | Sampling Person Requalification                               | 416 |
|    | Key Points for Sampling Programs and Sampling Person Training | 417 |
|    | Documentation                                                 | 418 |
|    | Conclusions                                                   | 418 |
|    | Reference                                                     | 419 |
|    | About the Author                                              | 419 |

### SECTION SIX CLEANING AND CLEANING VALIDATION QUALITY SYSTEMS

| 21 | QUALITY SYSTEMS APPROACH TO CLEANING<br>AND CLEANING VALIDATION | 423 |
|----|-----------------------------------------------------------------|-----|
|    | Timothy  . Fields                                               | 725 |
|    | Introduction                                                    | 423 |
|    | Management Role in Cleaning                                     | 424 |
|    | Policies and procedures                                         | 425 |
|    | Personnel                                                       | 425 |
|    | Test facilities                                                 | 425 |
|    | Facilities and equipment                                        | 426 |
|    | Cleaning agents                                                 | 426 |
|    | Periodic review                                                 | 426 |
|    | Cleaning and cleaning validation at contract facilities         | 426 |
|    | Management communication                                        | 427 |
|    | Continuous Improvement                                          | 427 |
|    | Quality System Enablers                                         | 428 |
|    | Knowledge management                                            | 428 |
|    | Key information for cleaning                                    | 428 |
|    | Applications of knowledge management                            | 430 |
|    | External sources of knowledge                                   | 431 |
|    |                                                                 |     |

| 431 |
|-----|
| 431 |
| 434 |
| 434 |
| 434 |
| 435 |
| 435 |
| 436 |
| 436 |
| 436 |
| 437 |
|     |

### 22 CHANGE MANAGEMENT IN CLEANING AND CLEANING VALIDATION

439

| Introduction                                                   | 439 |
|----------------------------------------------------------------|-----|
| Change Management Overview                                     | 440 |
| Definition                                                     | 441 |
| Background and evolution                                       | 441 |
| Regulations and risk management                                | 442 |
| Validation and Change Control — A Maintenance Activity         | 444 |
| Change Management Programs                                     | 445 |
| Establishing a change management program                       | 445 |
| Change control procedures                                      | 446 |
| Who may initiate changes?                                      | 447 |
| Change judgments — quality risk management                     | 448 |
| Change control documentation                                   | 451 |
| One-size does not fit all                                      | 451 |
| Training In Cleaning Validation                                | 452 |
| Change Management in Cleaning and Cleaning Validation          | 453 |
| Cleaning process                                               | 453 |
| Case Study: Change to the Cleaning Agent                       | 454 |
| Cleaning agent lack of control                                 | 454 |
| Inadequate cleaning agent incoming specifications              | 455 |
| Case Study: Changes to the Cleaning Process — Vague Inexplicit |     |
| Process Directions                                             | 456 |
| Cleaning liquid concentration                                  | 456 |
| Cleaning process rinsing                                       | 456 |
| Case Study: Changes to the Cleaning Process                    | 457 |
| Manual cleaning — "Do whatever it takes"                       | 457 |
| "Clean enough"                                                 | 457 |
| Formulation or process residue                                 | 458 |
| Case Study: Changes to the Residue                             | 458 |
| Red tablet formulation                                         | 458 |
| Dirty hold time                                                | 459 |

xxiii

| 459 |
|-----|
| 460 |
| 460 |
| 460 |
| 460 |
| 461 |
| 461 |
| 462 |
| 463 |
| 465 |
| 466 |
|     |

| 23 | CONTROL CHARTING FUNDAMENTALS                                 | 467 |
|----|---------------------------------------------------------------|-----|
|    | Bernard M. McGarvey                                           |     |
|    | Introduction                                                  | 467 |
|    | Variation and Control Charting — A Personal Application       | 468 |
|    | Shewhart Steps In!                                            | 471 |
|    | Individual's Control Chart                                    | 473 |
|    | Moving Range (mR) Control Chart                               | 476 |
|    | Combination XmR control charts                                | 478 |
|    | Significance of Statistical Control for Variability Reduction |     |
|    | and Process Improvement                                       | 479 |
|    | Control vs. Analysis with Control Charts                      | 482 |
|    | What Parameters should be Monitored via a Control Chart?      | 483 |
|    | Run Rules for Control Charts                                  | 485 |
|    | Run rules fundamentals                                        | 485 |
|    | Run rules practical advice                                    | 486 |
|    | Sensitivity to Key Assumptions?                               | 486 |
|    | Other Types of Control Charts                                 | 489 |
|    | X/R, X/s Charts                                               | 489 |
|    | Control charts for count data                                 | 491 |
|    | Defective units and defects                                   | 491 |
|    | Constructing an np chart                                      | 492 |
|    | Constructing a p chart                                        | 493 |
|    | Constructing a c chart                                        | 494 |
|    | Constructing a u chart                                        | 494 |
|    | LCL in count charts                                           | 495 |
|    | A warning on the use of count control charts                  | 496 |
|    | Case Study — Implementing Control Charts                      | 496 |
|    | Exercise — Using Control Charts                               | 500 |
|    | References                                                    | 502 |
|    | About the Author                                              | 503 |
|    | Answers to Control Chart Exercise Questions                   | 503 |

| 24 | ANALYTICAL CLEANING LABORATORY GAP ANALYSIS<br>Brian P. Huey | 505 |
|----|--------------------------------------------------------------|-----|
|    | Introduction                                                 | 505 |
|    | Self-audit Questions                                         | 506 |
|    | Laboratory organization                                      | 506 |
|    | Sample collection                                            | 506 |
|    | Sample handling in the laboratory                            | 507 |
|    | Analytical method development                                | 507 |
|    | Testing performance                                          | 508 |
|    | Data treatment                                               | 509 |
|    | Reporting of results                                         | 509 |
|    | Data storage                                                 | 510 |
|    | Communicating with Auditors                                  | 510 |
|    | The Audit Process                                            | 510 |
|    | Case Study: Cleaning Validation Laboratory Audit             | 511 |
|    | Document Retrieval                                           | 513 |
|    | Conclusions                                                  | 513 |
|    | References                                                   | 513 |
|    | About the Author                                             | 514 |

### EPILOGUE PROBLEMS IN CLEANING AND CLEANING VALIDATION

| 25 | CLEANING AND CLEANING VALIDATION                                    |       |
|----|---------------------------------------------------------------------|-------|
|    | GENERAL PROBLEMS                                                    | 517   |
|    | Paul L. Pluta, Rizwan Sharnez, Cormac Dalton and Kevin O'Donnell    |       |
|    | Introduction                                                        | 517   |
|    | Product Residue Considerations                                      | 519   |
|    | Physical and chemical properties of residue as a basis for cleaning | 520   |
|    | Case Study #1: Cleaning of a Basic API                              | 520   |
|    | Case Study #2: Cleaning of a Highly Insoluble API                   | 521   |
|    | Regulatory considerations                                           | 522   |
|    | Residue solubility in most difficult-to-clean residue matrix        | 523   |
|    | Regulatory considerations                                           | 526   |
|    | "Cleanability" in determining the most difficult-to-clean residue   | 527   |
|    | Equipment Considerations                                            | 528   |
|    | Non-uniform contamination transfer                                  | 529   |
|    | Most difficult-to-clean locations in equipment                      | 53 I  |
|    | Equipment technical analysis                                        | 532   |
|    | Observation of equipment after processing                           | 532   |
|    | Equipment disassembly review                                        | 532   |
|    | Cleaning procedure review                                           | 532   |
|    | Operator interviews                                                 | 532   |
|    | Analysis and evaluation of above information                        | 532   |
|    | www.pdo.org                                                         | /hook |

| Preparation of sampling documents for cleaning validation | 533 |
|-----------------------------------------------------------|-----|
| Documentation of above                                    | 533 |
| Cleaning Process Considerations                           |     |
| Case Study #3: Manual Cleaning — Reality                  |     |
| Manual cleaning qualification                             |     |
| Stage I — Manual cleaning process development             | 537 |
| Stage 2 — Manual cleaning performance                     | 538 |
| Equipment inspection                                      | 538 |
| Stage 3 — Maintaining and monitoring manual               |     |
| cleaning performance                                      | 538 |
| Regulatory assessment of manual cleaning processes        | 539 |
| Cleaning procedure documentation                          | 541 |
| Laboratory Considerations                                 | 542 |
| Residue stability in cleaning residue analysis            | 542 |
| Residue recovery studies                                  | 543 |
| Swab sampling technique, reliability, and training        | 544 |
| Conclusions                                               |     |
| References                                                |     |
| About the Authors                                         |     |

Index

549

### **CASE STUDIES**

| Cleaning Validation Failure — Unknown High-Performance                 |     |
|------------------------------------------------------------------------|-----|
| Liquid Chromatography (HPLC) Peaks                                     | 17  |
| Polymer Residue Cleaning Method Development                            |     |
| Master Soils for Cleaning Cycle Development and Validation             |     |
| Understanding Residue Chemistry                                        | 220 |
| Inadequate Cleaning in Campaigns                                       | 221 |
| Manual Cleaning Problems                                               | 221 |
| Biotech Manufacturing Cleaning Validation                              | 259 |
| Atypical Product Residue                                               | 260 |
| Vessel Visual Inspection for a White Precipitate                       | 264 |
| Bioburden Within a Non-sterile Purification Process                    |     |
| Cleaning of Fermentation Tanks for Manufacture of a Small Molecule API |     |
| Inadequate Characterization of "Clean"                                 |     |
| Recovery Techniques Not Adequately Defined                             |     |
| Calculated Acceptance Criteria Below the Loq of the Analytical Method  | 296 |
| Dh Autocart — An Automated Solution to Enable                          |     |
| Dynamic Off-Line Cleaning in a GMP Environment                         | 311 |
| Test Equipment                                                         | 312 |
| Process Equipment                                                      | 312 |
| Absence of Active Failure                                              | 324 |
| Mixer Cleaning                                                         | 325 |
| Microbial Load Reduction                                               | 347 |
| Tangential Flow Filter — Concentration                                 | 348 |

| Detergent Discontinuation                                                           | 348  |
|-------------------------------------------------------------------------------------|------|
| PAT for Chromatography Column Cleaning                                              | 376  |
| Column Integrity Test as PAT Forward Processing Criteria                            | 378  |
| Column Pressure Drop as PAT Forward Processing Criteria                             |      |
| Product Peak HETP as PAT Critical Quality Attribute and Forward Processing Criteria | 383  |
| Product Peak Asymmetry Factor as a PAT Critical Quality Attribute                   | 385  |
| Product Peak Retention — Resin Capacity                                             | 386  |
| False Negative Cleaning Data                                                        | 398  |
| Cleaning Validation Sampling with an Extension Pole                                 | 402  |
| Change to the Cleaning Agent                                                        | 454  |
| Changes to the Cleaning Process — Vague Inexplicit                                  | 456  |
| Changes to the Cleaning Process                                                     | 457  |
| Changes to the Residue                                                              | 458  |
| Changes to the Equipment Surface                                                    | 460  |
| Sampling and Analytical                                                             | 46 I |
| Implementing Control Charts                                                         | 496  |
| Cleaning of a Basic API                                                             | 520  |
| Cleaning of a Highly Insoluble API                                                  | 521  |
| Manual Cleaning — Reality                                                           | 536  |