RAPID Sterility Testing

Jeanne Moldenhauer Editor

Rapid Sterility Testing

Edited by Jeanne Moldenhauer

PDA Bethesda, MD, USA DHI Publishing, LLC River Grove, IL, USA

10 9 8 7 6 5 4 3 2 1

ISBN: 1-933722-56-8 Copyright © 2011 Jeanne Moldenhauer All rights reserved.

All rights reserved. This book is protected by copyright. No part of it may be reproduced, stored in a retrieval system or transmitted in any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. Printed in the United States of America.

Where a product trademark, registration mark, or other protected mark is made in the text, ownership of the mark remains with the lawful owner of the mark. No claim, intentional or otherwise, is made by reference to any such marks in the book.

While every effort has been made by the publisher and the author to ensure the accuracy of the information expressed in this book, the organization accepts no responsibility for errors or omissions. The views expressed in this book are those of the editors and authors and may not represent those of either Davis Healthcare International or the PDA, its officers, or directors.

This book is printed on sustainable resource paper approved by the Forest Stewardship Council. The printer, Gasch Printing, is a member of the Green Press Initiative and all paper used is from SFI (Sustainable Forest Initiative) certified mills.

PDA

4350 East West Highway Suite 200 Bethesda, MD 20814 United States www.pda.org/bookstore 301-986-0293

Davis Healthcare International Publishing, LLC

2636 West Street River Grove IL 60171 United States www.DHIBooks.com

CONTENTS

1	F)	r	e	f	a	C	e)			
										,		

Jeanne Moldenhauer

Section | Introduction

2	The Sterility Tests	7
	Scott Sutton	
	Background	7
	The Sterility Tests	9
	Limitations to the Sterility Tests	11
	Sample size	11
	Recovery conditions	13
	Clarifications and Enhancements to the Harmonized Sterility Test	14
	US FDA/CBER	14
	USP	15
	Pharm. Eur.	15
	TGA	16
	PIC/S	16
	PI 012-2 "Recommendations on Sterility Testing"	17
	PI 014-3 "Recommendations on Sterility Testing"	18

I

RMM and the Sterility Tests	18
Investigations in the Sterility Test	20
Conclusions	24
References	24
About the Author	

3	Survey of Rapid Technologies Suitable	
	for Sterility Testing	29
	Ron Smith	
	BacT/ALERT® 3D Dual-T (bioMérieux)	33
	ScanRDI® (AES Chemunex)	34
	Milliflex™ Rapid Microbiology Detection and	
	Enumeration System (Millipore)	35
	Celsis Advance™ Rapid Detection System (Celsis Inc.)	36
	D-Count [®] and BactiFlow [®] (AES Chemunex)	38
	PallCheck™ Rapid Microbiology System (Pall Life Sciences)	39
	About the Author	41

Section 2 Regulatory Expectations for Rapid Sterility Tests

4	Regulatory Submissions for Rapid Sterility Tests	45
	Bryan S. Riley	
	Introduction	45
	Validation of a Rapid Sterility Test	47
	Regulatory Submissions for Rapid Sterility Tests	49
	References	54
	About the Author	57
5	Regulatory Expectations for Rapid Sterility	
	Testing — A European Perspective	59
	Jeanne Moldenhauer	
	Background	59
	Marketing Authorisation Procedures	61

Pharm Europa 5.1.6	62
Variation Regulation	64
Post Approval Change Management Protocols (PACMPs)	64
EMA Scientific Advice Procedure	65
Conclusion	65

iv

	Contents	v
References About the Author		65 66

Acquired Learning in implementing hapid	
Microbiological Methods in the Quality Control	
Laboratories of a Pharmaceutical Company	67
Silvia Pulido Morales	
Overview of Laboratorios PiSA SA de CV	67
PiSA Laboratories Objectives	68
PiSA's mission	68
PiSA's vision	69
Introduction of the Company to Rapid Microbiological Methods	69
General background	69
Integration of the First Rapid Microbiological Methods —	
Bacterial Endotoxins	71
Introduction	71
Feasibility of the rapid bacterial endotoxins method	71
The validation plan utilized	71
Lessons learned from implementing a rapid	
endotoxin method	73
Rapid Microbiological Methods as an Alternative	
to Sterility Testing	73
Validation of an impedance method used for microbial	
detection in sterility testing	75
Preliminary tests	76
Domestic strains isolated and identified	77
Reference strains ATCC	77
Selection of filtration systems and culture media	77
Incubation time	78
Preparation of microbial suspensions of domestic and	
reference strains	78
Product validation using the impedance/conductance system	78
Determination of incubation time for the sterility test	
in impedance/conductance system	79
Evaluation by the Mexican Health Secretary	80
Lessons learned	81
Selection and Implementation of our Second Method	
for Microbiological Sterility Testing	82
Antecedents	83
Rapid microbiological method project structure	85
User Requirements Specifications (URS)	86
Functional Specifications and Design (DSP)	86

Traceability Matrix Requirements (RTM)	87
Standard qualification procedures	87
Factory Acceptance Test (FAT) protocols	87
Site Acceptance Test (SAT) protocols	87
Design qualification protocols	88
Qualification of microbial detection equipment,	
Chem Scan RDI protocols	88
Qualification for auxiliary equipment for sterility rapid	
method testing	88
Facilities and services qualification	89
Validation master plan	90
Rapid sterility method validation plan	90
Pre-validation activities	90
ltems related to regulatory compliance —	
is system validation possible?	92
Are there official requirements that should be	
satisfied by the new methodology?	93
Validation master plan	94
Rapid method for sterility testing	95
General basis for the detection method	95
General methodology procedure	96
Sterility test rapid method validation	97
Results report	119
Conclusions	120
Side-by-side comparative study	120
Rapid sterility test method revalidation	121
Training and qualification for microbiology analysts	121
Submitting Information to the Mexican Health Authority	121
Current Status of Rapid Microbiological Method for	
Sterility Testing	122
References	122
About the Author	123

Section 3 Compendial Expectations

7	The History of the Development, Applications	
	and Limitations of the USP Sterility Test	127
	Anthony M. Cundell	
	Introduction	127
	USP Sterility Test	128
	History of the USP Sterility Tests	3

Contents	vii
Culture Media and Incubation Conditions	138
Limitations of the Selected Media and	
Incubation Conditions	139
Solid Versus Liquid Media for Sterility Testing	144
Static Versus Shake Culture	146
Selection of Media and Incubation Conditions	146
Viable But Not Culturable Microorganisms	146
Best Practices for the Method Qualification	
for the USP Sterility Test	147
Application of Alternate Methods to Sterility Testing	153
ATP bioluminescence	155
CO ₂ evolution monitoring	158
Flow cytometry	159
Nucleic acid-based methods	159
History of High-Impact Sterility Failures in the	
Pharmaceutical and Animal Health Industry	159
Warning Letters	160
Conclusions	161
References	161
Addendum	165
Appendix — The Comparison of the Harmonized	
Tripartite Sterility Test and the FDA 21 CFR 610.12	
Sterility Test	167
About the Author	169
Rapid Sterility Testing —	

A European Perspective	171
Hans van Doorne	
Current Sterility Test	171
European Pharmacopoeia Position Towards Rapid Methods	172
Formal policy	172
Rapid sterility testing in individual monographs	173
Acceptance in Europe	174
Regulatory Acceptance	174
Conclusion	175
References	175
About the Author	176

Section 4 General Information

9	Use of Viability Methods — The Problem of	
	Viable But Not Culturable Cells (VBNCs)	181
	Jeanne Moldenhauer	
	Viable But Non-Culturable (VBNC) Cells	182
	The Changes that Occur During the VBNC State	186
	Can VBNC Cells be Resuscitated?	187
	If the Cells Cannot be Cultured, Why do I Care About Them?	187
	What Does it Mean to be Viable?	188
	Problems with Viability Assessments	198
	Conclusion	198
	References	199
	About the Author	200
10	Statistical Methods for Detection of Organisms	

with Sterility Tests	201
Edwin R. van den Heuvel, Geert Verdonk and Pieta IJzerman-Boon	
Introduction	201
Basic Statistical Principles	206
Most Probable Number	210
Estimation procedure	211
Comparability study	216
Limit of Detection and Recovery	218
Experimentation	220
Estimation procedure	222
Results BacT/ALERT® and AKuScreen	225
Performance Estimation Procedure	232
Summary and Discussion	238
References	239
About the Authors	242

11	Statistics of Validating an Alternate Sterility Test —	
	Limits of Detection and Other Problems	245
	Julie Schwedock	
	Introduction	245
	Probabilities and Multiplicity	246
	Statistically Different vs. Statistically Equivalent	248
	Multiplicity, Validation and Controlling Risk	253
	Limits of Detection	255

	Contents	ix
	Conclusions References	264 264
	About the Author	266
12	Tools for Pre-testing, Validating and Implementing	

_		
	a Rapid Sterility Test Methodology	267
	Jeanne Moldenhauer	
	Learning from Others	267
	Developing a Validation Strategy	268
	Stressed Microorganisms	269
	Evaluation of the Appropriate Media to Use	270
	Verifying Specificity	271
	Proving Detection at Low Levels of Contamination	272
	Verifying the Range and Linearity	273
	Statistics	273
	Dealing with Potential Contamination	274
	Conclusion	281
	Appendix — Useful References on Rapid Methods	
	and the Validation of These Methods	281
	References	289
	About the Author	291

13	A Superior Alternative to Rapid Sterility Testing	293
	Edward C. Tidswell and Mike Sadowski	
	The Clinical Relevance of Parenteral Product Sterility	293
	Sterility Assurance and the History of Microbiology	296
	A Risk Assessment of Sterility Testing Strategies	298
	Hypothetical Aseptic Manufacturing Scenario	298
	Sterility Testing Strategies	300
	Classic Pharmacopoeial Sterility Test (PST)	300
	Growth-Based Rapid Microbial Method (G-RMM)	301
	Non-Growth Based Rapid Microbial Method (NG-RMM)	302
	In situ Rapid Microbial Method (RMM-PAT)	302
	Risk Assessment — Risk of Sterility Test Type II Errors	303
	Sample Size and Sampling Frequency	306
	Chain of Custody Error	308
	Modality of Test	309
	Sample Storage	309
	Sample Container Impact	310
	Growth Versus Non-Growth	310

Rapid Sterility Testing

Species diversity and culturability	311
Microbial dormancy	314
Operator Error	315
Overall Risk	316
Conclusion	316
References	318
About the Authors	326

Section 5 User Case Studies

14	Use of BacT/ALERT® for Sterility Testing of Cell Therapy Products	331
	lohn Duguid	
	Introduction	331
	Selection	332
	BacT/ALERT system description	333
	Compendial sterility test description	333
	Development	334
	Feasibility study	334
	Bacteriostasis/Fungistasis	335
	Validation	335
	Method modification based on validation results	338
	Additional Development	339
	Effect of antibiotics	340
	Incubation temperature	340
	Bacteriostasis/Fungistasis and growth-promotion	
	modifications	341
	Additional Validation	342
	Method modification based on supplier changes	343
	Instrument model	344
	Media bottle	344
	Approval	345
	Implementation	346
	False positives	346
	Early detection of contamination	348
	Incubation time reduction	350
	Future Applications	351
	Conclusion	351
	References	352
	About the Author	353

	Contents	xi
15	IQ, OQ and PQ Validation Project Overview	
	— A Case Study	355
	Gary Gressett	
	Executive Summary of Content and Purpose for Study	355
	Installation Qualification Testing Summary	357
	Installation Qualification Summary	358
	Installation Qualification Summary	359
	Installation Qualification Test Results	359
	Operational Qualification	362
	Operational Qualification Testing Summary	362
	Operational Qualification Summary	365
	Operational Qualification Summary	366
	Operational Qualification Testing Summary	367
	Performance Qualification Summary	368
	Introduction	368
	Scope	369
	System description	370
	Process overview	372
	Analysis and conclusion	373
	System Objective	374
	Expected business benefit	376
	Testing Approach	376
	Summary of the Overall Project	395
	About the Author	396
16	PCR and Other Nucleic Acid Amplification Techniques — Challenges and Oppportunities for their Application to Rapd Sterility Testing	397

Claudio	D. Denoya	
Introdu	uction	397
Nuclei	c Acid Amplification-Based Technologies (NAAT)	399
Р	CR and Real Time Quantitative PCR (qPCR)	399
L	CR and SDA	399
R	T-PCR	400
Ν	JASBA and TMA	402
Ν	IAAT in the pharmaceutical industry	404
Univer	sality	404
Limit c	of Detection (LOD)	407
Viable	and Culturable (VAC) versus Viable But Non-Cuturable	
(VBNC) Microbial Cells	407
Viable'	Versus Dead Microbial Cells	408
Backgr	ound DNA	409

Rapid Sterility Testing

Cross Contamination and Carryover	409
False positives	409
False negatives	410
Technical Areas of General Concern	411
Acceptability of PCR and Related Technologies as an Option	
for a Rapid Sterility Test	411
A Simplified qPCR Platform for a Rapid Sterility Assay	412
Initial Evaluation of GeneDisc as a Pharmaceutical	
Microbiological Quality Control Tool	415
Conclusion	426
References	427
About the Author	43 I

17	Rapid Sterility Testing Using ATP Bioluminescence	
	Based Pallchek™ Rapid Microbiology System	433
	Claudio Denoya, Jennifer Reyes, Maitry Ganatra and Deniel Eshete	
	Introduction	433
	Selection of a Rapid Microbiological Method Suitable for	
	Sterility Testing	435
	Detection of Microbial Contamination using	
	ATP Bioluminescence	437
	Pallchek Rapid Microbiology System	438
	Validation of an Alternative Microbiological Method	439
	Challenge Microorganisms, Media and Growth Condition	439
	Components of Pallcheck Rapid Microbiology System	441
	Bioluminescence Assay Requirements of Test Environment	442
	Drug Product Sample	442
	Presence–Absence Test with Enrichment	442
	Validation Strategy of Rapid Sterility Test	443
	System Suitability Testing	443
	Establishment of Background Values	444
	Initial Validation Parameters of the Qualitative Rapid Method	445
	Linearity	445
	Ruggedness and robustness	446
	Specificity, limit of detection and repeatability	448
	Evaluation of the Rapid Bioluminescence Test in the Presence	
	of Excipients	451
	Product specific feasibility study	451
	Summary	453
	References	457
	About the Authors	459

xii

	Contents	xiii
18	Detection and Characterization of Microbial	
	Contamination by Capillary Electrophoresis	463
	Qing Feng and Daniel W. Armstrong	
	Introduction	463
	Basic Principles of CE that Pertain to the Analysis of	
	Microorganisms	466
	Detection of Microbial Contamination	467
	Concluding Remarks	478
	References	479
	About the Authors	484

Index

485

1

PREFACE

Jeanne Moldenhauer

Excellent Pharma Consulting Mundelein, IL USA

The current compendial sterility test methodology has been fully harmonized for Europe, Japan and the United States for many years (PF, 1999). In spite of having a fully harmonized test methodology the sterility test method as stated is flawed for its intended purpose. The dictionary definition of sterile is usually described as free from all viable microorganisms. As such, many who are unaware assume that the compendial test method, if acceptable, guarantees that there are no viable microorganisms present in the item being tested. Unfortunately, in reality the test methodology is only effective in detecting gross contamination in a batch of product. Two of the major issues with the test method were identified by Bryce in 1956 and include the following (Moldenhauer and Sutton, 2004):

- the test method is only able to detect those organisms that are able to grow under the conditions of the test
- the sample size for the test is so small that it only provides a gross estimate of the sterility of the product lot.

These same limitations stated in 1956 for the test are applicable to the conventional methods used today. Due to the flaws associated with the test method, other methods and controls are employed to aid in assuring the sterility of the product.

In the early 1980s Baxter Healthcare, Inc. implemented a program called parametric release. The program was based upon its extensive knowledge of its moist heat terminal sterilization processes. In fact, it understood these processes so well that when the specified acceptance criteria for the cycles is met, they could ensure that the product is sterile without performing a compendial sterility test. It was another 15 years before another company successfully obtained parametric release for its products.

With the current requirement for a 14-day incubation for the compendial sterility test, eliminating this requirement with the implementation of parametric release allowed for a substantial cost avoidance associated with storing the product during this time.

Companies that implemented parametric release for their terminally sterilized products then focused on how their aseptically processed products might achieve a shortened time to product release (as part of the sterility test). To date regulatory support has not been gained to support a program of parametric release for aseptically-filled products. This has resulted in many companies looking at rapid sterility testing methods to reduce the time to release for aseptically-filled products.

In this book you will find a detailed history of the sterility test methodology. Discussions are also provided for the regulatory requirements and allowances for gaining approval of rapid sterility test methods. Compendial requirements for validation and implementation of these methods in the United States and Europe are also discussed. Several different authors have provided information on the types of methods that can be considered for sterility testing. There are also chapters that discuss issues like the statistical methods used to validate these methods, especially since many of the new technologies are superior to the conventional methods. Last, there are a substantial number of case studies describing how various companies have approached selecting, validating and implementing a new methodology for sterility testing at their site.

REFERENCES

- Moldenhauer, J. and Sutton, S.V.W. (2004) Towards an Improved Sterility Test. *PDA J Pharm Sci Tech.* **58** (6): 284–286.
- PF (1999) USP <71> Sterility Tests. *Interim Announcement Pharmcopeial Forum* **29**(4): 933–940.