BIOFILM CONTROL IN DRUG MANUFACTURING

Lucia Clontz and Carmen M. Wagner Editors

Biofilm Control in Drug Manufacturing

Lucia Clontz and Carmen M. Wagner Editors

> PDA Bethesda, MD, USA DHI Publishing, LLC River Grove, IL, USA

10 9 8 7 6 5 4 3 2 1

ISBN: 1-933722-64-9 Copyright © 2012 Lucia Clontz and Carmen M. Wagner All rights reserved.

All rights reserved. This book is protected by copyright. No part of it may be reproduced, stored in a retrieval system or transmitted in any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. Printed in the United States of America.

Where a product trademark, registration mark, or other protected mark is made in the text, ownership of the mark remains with the lawful owner of the mark. No claim, intentional or otherwise, is made by reference to any such marks in the book. The authors have made every effort to provide accurate citations. If there are any omissions, please contact the publisher.

While every effort has been made by the publisher and the authors to ensure the accuracy of the information expressed in this book, the organization accepts no responsibility for errors or omissions. The views expressed in this book are those of the editors and authors and may not represent those of either Davis Healthcare International or the PDA, its officers, or directors.

Connecting People, Science and Regulation®

This book is printed on sustainable resource paper approved by the Forest Stewardship Council. The printer, Gasch Printing, is a member of the Green Press Initiative and all paper used is from SFI (Sustainable Forest Initiative) certified mills.

PDA

4350 East West Highway Suite 200 Bethesda, MD 20814 United States www.pda.org/bookstore 001-301-986-0293

Davis Healthcare International Publishing, LLC

2636 West Street River Grove IL 60171 United States www.DHIBooks.com

CONTENTS

PREFACE

I	THE CONTAMINATION CONTROL BY DESIGN (CCbD©) MODEL — A PROACTIVE APPROACH TO CONTAMINATION CONTROL	I
	Carmen M.Wagner	
	Control of Microbial Contamination in Drug Manufacturing	I
	GMP regulations and contamination control	3
	Development of the (CCbD©) concept	5
	Relationship between CCbD©, QbD, RM and PAT	7
	Quality management and QbD	10
	Quality risk management	11
	Process Analytical Technology (PAT)	15
	The Contamination Control by Design (CCbD©) Model	16
	Composition of the CCbD© model	17
	CCbD© model elements	18
	Knowledge and understanding	19
	Risk assessment	21
	Quality systems and documentation	22
	Process Analytical Technology	22

iii

xv

Controlling the sources of contamination	23
Personnel controls	23
Raw materials controls	24
Process controls	24
Facility and clean utilities controls	25
Equipment controls	25
Monitoring and continuous improvement	26
Conclusion	27
References and Additional Reading	29
About the Author	32
Appendix: Regulatory Framework	33

2	BIOFILM BASICS	37
	Paul J. Sturman	
	Introduction	37
	Biofilm Formation, Growth and Maturity	40
	Conditioning film deposition	42
	Initial cell migration to surface and attachment	42
	Permanent cell attachment and growth	43
	Biofilm maturation and detachment	43
	Biofilm Processes	44
	Concentration gradients	45
	Microbial community development	45
	Genetic transfer in biofilms	46
	Quorum sensing in biofilms	47
	The Biofilm Matrix	47
	Extracellular matrix composition	48
	Biofilm morphology	49
	The viscoelastic nature of biofilms	49
	Detecting and Measuring Biofilms	50
	Planktonic organism sampling	51
	Biofilm sampling	51
	Indirect assessment of biofilm	52
	Why Biofilms are Hard to Kill	52
	Slow penetration of antimicrobials	53
	Altered microenvironments	54
	Stress response and antimicrobial treatment	54
	Persister cells	55
	Biofilm Control Strategies	56
	Physical control strategies	56
	Chemical control strategies	57

Oxidizing biocides

iv

58

Contents	v
Non-oxidizing biocides	59
Biofilm removal agents	59
Quorum-sensing blockers	60
Anti-biofilm coatings/imbedded antimicrobials	61
Biological control strategies	61
Nutrient removal	63
Application method and design strategies	63
Conclusion	64
References	65
About the Author	72

3	MICROBIAL CONTAMINATION CONTROL CONSIDERATIONS IN BIOPHARMACEUTICAL	
	PRODUCTION	75
	Lucia Clontz	
	Introduction	75
	Microbial Contamination Control	77
	Biofilm Formation and Dispersion	80
	Initial cell adhesion to surfaces	81
	Surface roughness	81
	Surface chemical composition	82
	Biofilm formation in liquid environments	84
	Biofilm dispersion	85
	Equipment — Contamination Risks and Control	86
	Equipment design	86
	Sanitary design	87
	Cleaning and decontamination	88
	Cleaning validation	88
	Cleaning verification	90
	Microbial cleaning specifications	91
	Sanitization and sterilization	91
	Equipment soft parts	92
	Bioprocessing equipment	94
	UF/DF systems	96
	Chromatography systems	101
	Contamination control strategies	104
	Single-use technology	107
	Biofilm Impact on Products and Business	109
	Conclusion	112
	References	113
	About the Author	116

THROUGH RISK MANAGEMENT	
Karen Zink McCullough	
Introduction	11
Risk Management	
Product Design and Development: Establishing Control	
Measures for Bioburden and Endotoxin	12
The importance of product requirements in the	
initial assignment of microbial limits	12
Microbiological risk assessment	12
Risk assessment tools	12
Method development	12
Building design	13
Process development	13
Validation/Qualification of Systems/Processes:	
Demonstrating Control of Bioburden and Endotoxin	13
Facility cleaning and disinfection	13
Equipment cleaning and sanitization	13
Facility air and compressed gases	13
Personnel	14
Water systems	14
Process Validation: Critical Control Points for Bioburden	
and Endotoxin Control	14
In-process limits or levels	14
Routine Monitoring: Demonstrating Continued	
Control of Bioburden and Endotoxin	14
Operators	14
Monitoring of air and surfaces	14
Testing of raw materials and in-process samples	15
Data trending	15
Responding to nonconformances and excursions	15
Post Production Assessment of Microbiological Control	15
Summary	15
References	15
About the Author	16

5	CONTROLLING BIOFILMS IN DRUG	
	MANUFACTURING EQUIPMENT	165
	Mark Pasmore and Robert Fry	
	Introduction	165
	Biofilm Development	166

www.pda.org/bookstore

vi

4

Contents	vii
Ranking Biofilm Control	168
Manufacturing Systems	169
Systems and equipment design	171
Water distribution systems	171
Pharmaceutical/biopharmaceutical processing and	
filling equipment	172
Mixing/filling tanks	172
Pumps	175
Piping	176
Filters (microbial retentive)	177
Particulate filters/screens	178
Fill nozzles	178
Additional design considerations	179
Equipment cleanability	179
Materials of construction	180
Facility air quality	181
Single-use/disposable systems and components	181
Biofilm Prevention — System/Equipment Maintenance	182
Biofilm Control — Microbial Detection	184
Current methods for microbial monitoring	185
Biofilm detection	185
Biofilm Control — Equipment Cleaning	188
Cleaning/sanitization program	190
Trough/automatic parts washer cleaning	192
Storage of cleaned equipment	193
Equipment passivation	194
Effects of cleaning on materials	194
Biofilm Control — Differences/Similarities in Non-Sterile,	
Terminally Sterilized, and Aseptic Manufacturing	195
Biofilm Control — Validation	197
Biofilm Remediation	198
Conclusion	200
References	200
About the Authors	203

6 INVESTIGATING THE LINK BETWEEN CONTAMINATION IN THE MANUFACTURING ENVIRONMENT AND PATIENT SAFETY 205 Mark Hunter, Michelle Luebke and Mark Pasmore Patient 1 206 Patient 2 206 Infection 207

Sepsis	209
Signs and symptoms of infection/sepsis	210
Patient risk factors	214
Infection/sepsis — the perfect storm	216
Investigation — the causal continuum	218
Intrinsic continuum	220
Extrinsic continuum	221
Manufacturing contamination impacts on patients	225
Microbial Contamination in the Manufacturing Environment	
Non-sterile, terminally sterilized, aseptically filled	227
Proliferation	228
Ingress	229
Biofilms as an elevated risk	230
Conclusions	231
References	232
About the Authors	236

7 DETECTION, PREVENTION AND CONTROL OF BIOFILMS IN PHARMACEUTICAL WATER SYSTEMS

Introduction	239
Biofilm Impact	241
Biofilm Detection	242
Purpose	242
Historical approach/confusion	243
New understanding of biofilm	244
Planktonic proportionality	244
Localized effects	245
Impracticality of surface monitoring in pharmaceutical	
water systems	246
Flow interruption, system opening, and new	
component installation	246
Non-similar flow and topography	248
Process control and ideal planktonic sampling	250
Challenges of planktonic sampling permanent connections	252
Speciation and objectionable microorganisms	253
Biofilm Prevention	258
Water system design	258
Materials of construction	259
Tank level controls, vent filters, and rupture disks	261

239

Contents

Loops	261
Dead legs	263
Point-of-use valves	265
Point-of-use connectors	267
Sampling ports	268
Flush water disposal	270
Water system unit operations	271
In-line ultraviolet units	271
TOC reducers	274
Ozone destruction	275
Micro-retentive filters	275
Ultrafilters and nanofilters	278
Polishing deionizers	278
In-line UV unit in combination with downstream filter	279
Biofilm Control — Water System Maintenance	280
Multi-media or sand filters	281
Water softeners	281
Activated carbon beds	282
Ultraviolet lights	283
Filters	285
Reverse osmosis units	286
Deionizers	288
Twin bed deionizers	200
Mixed bed deionizers	290
Electro-deionizers	290
Ultrafilters	291
In-line/on-line instrumentation	292
Biofilm Control — Routine Sanitization	293
Hot water sanitization	293
Chemical sanitization	296
Heating/"pasteurization"	297
Continuous tank ozonation	298
Conclusion	298
References	299
About the Author	301

8	BIOFILM DETECTION AND DATA MANAGEMENT	303
	Teri C. Soli	
	Introduction	303
	Biofilm Detection	304
	Conventional cultivation-dependent methods	306
	Metabolic condition of bacteria	307

ix

Effect of growth medium composition	308
Alternative microbiological methods	315
Cultivation-dependent RMM methods	316
Non-cultivation dependent methods	319
Efficacy Monitoring	322
The value of data trending	323
Alert levels, action levels, and specifications	323
Control/Remediation	325
Root cause investigation	326
CAPA	328
Conclusion	330
References	331
About the Author	332

9	EARLY DETECTION AND PREVENTION	
	OF BIOFILMS IN PROCESS EQUIPMENT	333

Mark Fornalik	
Introduction	333
Fouling/Biofouling: A Primer	335
Detecting and Characterizing Biofilms	339
Removable coupons: fouling cell technology	339
Assessment tools: surface analytical science	341
Detecting wall fouling	344
Preventing and Remediating Biofilms	345
Mechanical Cleaning: Water Flush Optimization	346
Chemical Cleaning: Optimizing CIP	347
Choice of chemical cleaner	348
Chemical cleaner concentration and temperature	351
Surface tension and incorporating surfactants	
into chemical cleaning	353
Case Studies by the Author	354
High-purity water biofouling	355
Industrial salt water system	357
Bioprocessing operation	360
Large-scale brewery	362
Conclusion	365
References	369
About the Author	372

	Contents	xi
10	SANITIZATION APPROACHES FOR	
	BIOFILM CONTROL	373
	Teri C. Soli	
	Introduction	373
	Heat Sanitization	374
	Hot water	374
	Pure steam	377
	Chemical Sanitization	380
	Sanitizer efficacy	382
	Oxidizing Sanitizers	383
	Chemical concentration	385
	Chlorine	386
	Alkaline solution	387
	Partially neutralized solution	388
	Precautions and issues	388
	Non-chlorine halogens	389
	Ozone	389
	Precautions and issues	391
	Peracetic acid	393
	Precautions and issues	394
	Hydrogen peroxide	394
	Precautions and issues	395
	Chlorine dioxide	396
	Precautions and issues	397
	Proprietary Mixtures	397
	Hydrogen peroxide + peracetic acid + acetic acid	397
	Precautions and issues	398
	Alkaline peroxide + quat + chelator	399
	Precautions and issues	400
	Cleanroom disinfectants	401
	Quaternary ammonium compounds (quats)	401
	Phenolics	402
	Formaldehyde	402
	Glutaraldehyde	402
	Acids and caustics	402
	Passivating/derouging agents	403
	Overview of Keys to Effective Sanitization	403
	Sanitize frequently	404
	Kill and remove biofilm	404
	Use an effective sanitizer	404
	Use an effective procedure	405
	Minimize recolonization	405

Biofilm Control in Drug Manufacturing

Conclusion	406
References	406
About the Author	408

н	DISINFECTANT EFFICACY STUDIES	
	USING BIOFILM REACTORS	409
	Lucia Clontz	
	Introduction	409
	Flow-through Biofilm Reactors	412
	The Flow Cell System	413
	The Drip Flow Biofilm Reactor	413
	The Rotating Disc Reactor	414
	The Annular Reactor	415
	The CDC Biofilm Reactor	416
	Static Biofilm Reactors	417
	Colony biofilm assay	418
	Microtiter plate biofilm assay	418
	The MBEC™ assay	419
	The HTP Assay™	420
	Factors that Impact Disinfectant Efficacy Studies	421
	Choosing a Biofilm Reactor	423
	Testing Disinfectants Using the CDC Biofilm Reactor	424
	Setting up the CDC Biofilm Reactor	425
	Inoculating the CDC Biofilm Reactor	426
	Operating the CDC Biofilm Reactor	426
	Exposure of biofilm to disinfectants	427
	Harvesting and enumerating biofilm cells	428
	Testing Disinfectants Using Microtiter Plates	429
	Biofilm assay	430
	Crystal violet reporter assay	430
	Viable cell density determination	431
	Biofilm inhibition determination	432
	Disinfectant efficacy determination	432
	Determination of biofilm removal	432
	Determination of antimicrobial efficacy	433
	Disinfectant Efficacy Evaluation	433
	Method Validation	434
	Conclusion	435
	References	436
	About the Author	438

xii

Contents	xiii
CONCLUSION Lucia Clontz and Carmen M.Wagner	441
Future Trends in Biofilm Prevention, Control, and Remediation	442
References	444
About the Authors	445
APPENDIX Organizations with Special Focus on Biofilm	447
Education/Discussion	447
Companies that Provide Consulting, Products, and/or Services in the Area of Biofilms	450
Glossary	457

Index

469

PREFACE

Microbial contamination of pharmaceutical products continues to be frequently cited as a reason for product recalls, manufacturing problems, and product rejection. Microbial contamination is costly to manage, time consuming to investigate and often difficult to determine root cause. The frequency of such problems, as well as the cost and investment of time and resources required to address them, support the need to develop and implement better microbial control programs that can more effectively prevent contamination from occurring.

As you will learn in various chapters in this book, biofilms are a preferred way of life for microbes and they are not only responsible for contamination in pharmaceutical and biopharmaceutical processing but also for many human pathogeneses including chronic wounds, device-associated infections, and various nosocomial infections and diseases in patients with compromised immune systems (Wilson, 2001). In fact, as reported in Infection Research (Kerksiek, 2008) estimates of the frequency of infections caused by biofilms (bacterial and/or fungal) lie between 65% (Centers for Disease Control and Prevention/CDC) and 80% (National Institute

ΧV

of Health). In drug manufacturing, biofilms are known to impact equipment and systems, such as those used for water and product purification (e.g., filtration and chromatography). In addition, biofilms may lead to product adulteration, which can potentially cause patient harm. Therefore, understanding how microorganisms develop into biofilm cells, and the mechanisms of antimicrobial resistance present in biofilm communities, is critical for successfully controlling microbial contamination in drug manufacturing.

Over the years, many studies have been carried out in the areas of biofilm eradication, remediation, and prevention. However, the realization that biofilms are ubiquitous in nature and extremely difficult to destroy resulted in a shift in paradigm — from microbial eradication and remediation to biofilm prevention. Chapters 1, 4, 6, and 7 specifically address the importance of risk assessment and a proactive, rather than reactive, microbial control program.

On a molecular level, studies have been performed to better understand biofilm development. For example, in an article published in the Journal of Bacteriology (Branda et al., 2004), studies with Bacillus subtilis provided valuable information regarding the genetic control of biofilm formation, and showed that spore formation, long thought to be a process involving only single cells, is actually closely associated with the development of multicellular communities. There is particular interest on gene expression responsible for production of extra polymeric substances (EPS) and cell signaling/quorum sensing, both associated with biofilm establishment and growth (Hansen et al., 2007; Gonzales and Keshavan, 2006). Other studies include research with cyclic-di-GMP (c-di-GMP), which is a key player in the decision between motile planktonic and sessile microbial lifestyle. One study evaluated a chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels (Hickman et al., 2005). Data suggested that increased c-di-GMP levels enhance biofilm formation, while decreased c-di-GMP levels prevent initiation of biofilm development. Researchers are also attempting to gain greater understanding of "persister" cells, which are specialized dormant cells proposed as the main reason for the refractory nature of biofilm infections (Keren et al., 2004). Chapters 2, 3, and 8 explain in further detail some of these ideas.

xvi

Preface

In terms of contamination control, the literature describes approaches to biofilm removal and prevention that range from the use of enzymes that can remove most, but not all, types of biofilms (Orgaz et al., 2007) to antimicrobial surfaces (Danese, 2002). Chapters 10 and 11 address sanitization approaches and studies in biofilm remediation and control.

Given the fact that the first step in biofilm formation is actually the ability to attach to a surface, and not microcolony formation or production of an EPS matrix, it is critical to investigate biological pathways used by bacteria to detect the presence of surfaces. Although the initial contact with a surface is not necessarily regulated and may happen by chance, there is evidence that formation of a stable cell-surface interaction may be genetically regulated (Stanley and Lazazzera, 2004). This is an important finding, because if surface attachment can be controlled, or even prevented, then all the other pathways to complete biofilm formation would be negated. Chapters 2, 5, and 9 help shed some light on these topics.

It is clear that biofilms are responsible for a number of serious contamination challenges in pharmaceutical/biopharmaceutical manufacturing, and the cause of several medical problems including chronic infections and medical device related infections. These complex and highly structured communities are difficult to prevent and even more difficult to eradicate. This book reviews the status of biofilm knowledge, management and control in pharmaceuticals, and is the first attempt to gather this type of information.

We close the book with an Appendix on resources that can be used by readers as a guide to general information about biofilms and related products.

A special note of gratitude goes to the authors who worked diligently to help make this book an excellent source of information for the pharmaceutical professional working in this area. Special thanks as well to our colleagues, associates, vendors and others who encouraged us and provided direct or indirect input to our work. We also would like to recognize Amy Davis — without her constant guidance and encouragement, this book would not be

xviii Biofilm Control in Drug Manufacturing

possible. Last but not least, we would like to thank our spouses, Jim Clontz and Brian Wagner, for their constant support, endurance and patience as we deprived them of our company many nights, holidays and weekends, to complete the book in a timely manner. Thank you, all.

Lucia Clontz and Carmen Mg Wagner Store