MICROBIAL IDENTIFICATION: THE KEYS TO A SUCCESSFUL PROGRAM

Mary Griffin and Dona Reber Editors

Microbial Identification: The Keys to a Successful Program

Mary Griffin and Dona Reber Editors

> PDA Bethesda, MD, USA DHI Publishing, LLC River Grove, IL, USA

10 9 8 7 6 5 4 3 2 1

ISBN: 1-933722-65-7 Copyright © 2012 Mary Griffin and Dona Reber All rights reserved.

All rights reserved. This book is protected by copyright. No part of it may be reproduced, stored in a retrieval system or transmitted in any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. Printed in the United States of America.

Where a product trademark, registration mark, or other protected mark is made in the text, ownership of the mark remains with the lawful owner of the mark. No claim, intentional or otherwise, is made by reference to any such marks in the book. The authors have made every effort to provide accurate citations. If there are any omissions, please contact the publisher.

While every effort has been made by the publisher and the authors to ensure the accuracy of the information expressed in this book, the organization accepts no responsibility for errors or omissions. The views expressed in this book are those of the editors and authors and may not represent those of either Davis Healthcare International or the PDA, its officers, or directors.

Connecting People, Science and Regulation®

This book is printed on sustainable resource paper approved by the Forest Stewardship Council. The printer, Gasch Printing, is a member of the Green Press Initiative and all paper used is from SFI (Sustainable Forest Initiative) certified mills.

PDA

4350 East West Highway Suite 200 Bethesda, MD 20814 United States www.pda.org/bookstore 001-301-986-0293

Davis Healthcare International Publishing, LLC

2636 West Street River Grove IL 60171 United States www.DHIBooks.com

CONTENTS

nis Guilfoyle	
EFACE	xix
REGULATORY AND COMPENDIA GUIDANCE ON MICROBIAL IDENTIFICATIONS INCLUDING RECENT REGULATORY FINDINGS	I
Introduction	I
Regulatory Guidelines	2
Compendial Guidance	6
Microbial Identification as an Issue in FDA Warning Letters	13
Conclusions	14
References	14
About the Author	15
	REGULATORY AND COMPENDIA GUIDANCE ON MICROBIAL IDENTIFICATIONS INCLUDING RECENT REGULATORY FINDINGS Anthony M. Cundell Introduction Regulatory Guidelines Compendial Guidance Microbial Identification as an Issue in FDA Warning Letters Conclusions References About the Author

FOREWORD

iii

xv

2	PRIMARY IDENTIFICATION METHODS: BACK TO BASICS	
	Marsha Stabler Hardiman	
	Culture Media	18
	Temperature Conditions	23
	Culture Characteristics	23
	Pure Culture Isolation	25
	Gram Stain	27
	Spore Stain	30
	Microscopy	30
	Biochemical Screening Tests	31
	Oxidase test	32
	Catalase test	32
	Coagulase test	33
	Multitest phenotypic systems	34
	API strips	34
	Enterotube	35
	Training	35
	Conclusion	36
	References and Further Reading	37
	About the Author	38

3 MICROBIAL IDENTIFICATIONS IN THE QUALITY CONTROL LABORATORY: A MULTI-COMPONENT APPROACH Scott Sutton Introduction

Why do we Identify Microorganisms in QC Microbiology?	40
Internal QC of cultures	40
Tracking/trending	41
Raw material/API testing (including water as	
a raw material)	41
Non-sterile pharma and personal products	
testing — microbial limits and "absence of"	41
Routine environmental monitoring	42
Gram stain — people/soil/water	44
Genus-species	45
Environmental monitoring excursions	45
Product failures/issues	45
Microbial Identification Technologies	
Performance Requirements for Identification Technologies	46
Polyphasic Identification Strategies	46

39

Contents	v
What is polyphasic identification?	46
Polyphasic identification and the concept of "species"	47
Polyphasic identification and the QC microbiology	
laboratory	47
Case studies	48
Case study #1 — Burkholderia cepacia	48
Case study #2 — Bacillus subtilis, B. cereus, etc.	49
Performance Requirements for Identification Technologies	50
What are the Popular Methods for Microbial Identification	
in QC Microbiology?	52
Phenotypic	52
Gram stain/microscopy	53
Selective and differential media	54 E4
A PI Strips	55
BBL Crystal ID System	55
Vitek®	56
Biolog®	57
MIDI-Sherlock®	58
Genotypic	59
MicroSeg®	59
Riboprinter®	60
Bacterial barcodes	60
Proteotypic — MALDI-TOF	61
Other options	61
Conclusions	62
References	63
About the Author	68
CHALLENGES IN MICROBIAL IDENTIFICATIONS	69
Background on Microbial Identifications	69
Selecting the System for Use	71
How to Distinguish between Systems for Specific	
Types of Organisms	74
Taxonomic Issues	76
Typical Problems in Identifications	79
Organism preparation for testing	80
Use of similarity numbers	81
Phenotypic methods	
RiboPrinter® methods	81
Verification of microbial identification methods	83

Microbial Identification: The Keys to a Successful Program

Difficulties in identification	83
Making the right assumptions	83
Conclusions	84
References	84
About the Author	86

5	VALIDATION OF AN AUTOMATED MICROBIAL IDENTIFICATION SYSTEM	
	Amy McDaniel	
	Introduction	87
	System Validation: Initial Considerations	88
	Validation Plan	90
	Assessments	92
	User Requirements Specification	94
	Installation, Operational and Performance Qualifications	96
	Traceability Matrices	103
	Instrument SOPs	103
	Summary Reports	104
	Conclusion	104
	References	105
	About the Author	106

_		
6	FUNGAL IDENTIFICATION	107
	Ziva Abraham	
	Mold Contamination	107
	Nature of Fungi	110
	Classification	111
	Zygomycetes	111
	Ascomycetes	112
	Basiodiomycetes	113
	Deuteromycetes	113
	Anamorphs and Teleomorphs	114
	Medically Important Fungi	115
	Clinical Importance of Zygomycetes	116
	Clinical Importance of Ascomycetes	116
	Clinical Importance of Deuteromycetes	116
	Dimorphic pathogens	7
	Yeasts	118

Identification Basics	118
Growth and Sporulation Media	119
Preparation for Microscopic Examination of Fungi	120

vi

Contents	vii
Role of the Stain	120
Tease Mount Technique	121
Tape lift technique	121
Slide culture method	122
Microscopy	122
Stereo microscope	122
Using a compound microscope	123
Identification Keys	124
Appearance of growth	124
Examining the color of colony and color on reverse	
of the plate	124
Special features in surface growth	124
Texture of growth	125
Observation under the microscope	125
Zygomycetes	125
Ascomycetes	128
Deuteromycetes	131
Hylaine hyphae	131
Pigmented (dematiaceous) hyphae	134
Automation in Fungal Identification	136
Phenotypic technology	136
Genotypic Technology	138
Matrix Assisted Laser Desorption Ionization–Time of Flight	
(MALDI-TOF) Mass Spectrometry	139
Beta Glucans	140
Mycotoxins	142
Safety Precautions in Laboratory Operations	144
Conclusion	146
References	147
About the Author	150
IDENTIFICATION OF ADVENTITIOUS VIRAL CONTAMINANTS OF CELL	
CULTURE PROCESSES	151

CULTURE PROCESSES	151
Martina Kopp and Houman Dehghani	
Introduction	151
Viral Contamination of Cell Culture — Perspective	153
Contamination of Cell Culture with MMV	154
Mouse Minute Virus	156
Contamination of Cell Culture with Vesivirus	157
Vesiviruses	158
Evaluation Process for Confirmation and Identification	

viii Microbial Identification: The Keys to a Successful Program

of a Viral Contamination	161
In vitro Adventitious Virus Assay	164
Nucleic Acid Based Methods for Detection and Identification	
of Viruses	167
Emerging Nucleic Acid Based Technologies for Virus Identification	171
Regulatory Aspects	173
Conclusions	174
References	175
About the Authors	183

8 IDENTIFYING MYCOPLASMA CONTAMINATION: CONCEPTS AND TOOLS

CONCEPTS AND TOOLS	185
Shayn E. Armstrong, Jill A. Mariano, Cynthia A. Martino, and John A. Ryan	
Introduction	185
Taxonomy and Biology of Mollicutes	186
Incidence	189
Sources and transmission	190
Raw material filtration and irradiation	192
Regulations	194
Current Technologies	196
Surveillance testing	196
In-process testing	197
Final product testing	197
Where to test	198
Direct methods	198
Indirect methods	200
Indicator cell culture procedure	200
Test material qualification	202
Mycoplasma elimination	203
RMM for Detecting Mycoplasma	205
When to consider a RMM	205
Pros and cons	205
RMM suitability	206
Development and optimization of a PCR-based RMM	207
Conclusion	212
References	213
About the Authors	219

	Contents	ix
9	MICROBIAL IDENTIFICATIONS IN THE COSMETICS INDUSTRY	221
	Introduction	221
	Microbiological Testing in the Cosmetic Industry	221
	Ouality control testing of microbial strains, growth	
	promotion, reagents and identification kits	222
	Microbial content testing	223
	Raw ingredients and cosmetic products susceptible	
	to microbial contamination	223
	Raw ingredients and cosmetic products not	
	susceptible to microbial contamination	224
	Preservative challenge testing	226
	In-use testing	227
	Cleaning and sanitization	228
	Environmental testing	229
	Identification of Microbial Isolates	230
	Bacteria and yeast isolates	230
	Gram-positive bacilli	231
	Gram-positive cocci	237
	Gram-negative bacilli	244
	Yeast	249
	Mold	253
	Summary	254
	References and Further Reading	255
	About the Author	268

10 MICROBIAL IDENTIFICATIONS IN BIOPHARMACEUTICAL MANUFACTURING

Evelyn Der and Carole Genovesi	
Sample Types Processed for Identification	272
Raw materials (ingredients and excipients)	272
Drug substance	272
Drug product and active pharmaceutical ingredients	273
Disinfectants	273
Process simulations	274
Sterility testing	275
Culture collection/cell banks	275
Biological indicators	276
Water	276
Environmental monitoring	277
Gases	277

Microbial Identification: The Keys to a Successful Program

A MEDICAL DEVICE PERSPECTIVE Nina McAuliffe	307
MICROBIAL IDENTIFICATION —	
Appendix A3 Quarterly Microbial Identification Trend Evaluation	306
Created from LIMS Report	304
Appendix A2 Example of Microbial Trending – Excel Graph	
Appendix A1 Example of Microbial Trending — Partial LIMS Report	303
About the Authors	302
References	300
Conclusion	299
Interpretation of trends	299
Laboratory Information Management Systems (LIMS)	297
Tools for trending	297
Trending frequency and evaluation	296
Yeasts and molds	296
Gram negative rods formenters	295
Gram negative rods non-fermenters	295
Gram positive rods nonspore-formers	∠74 294
Gram positive coccus	עק 224
irending groups	273
Microbial Identification Trending	293
Retention and use of retained isolates	291
Ireatment of novel organisms	291
Typical isolates recovered	289
Disposition of Recovered Isolates	287
	284
Important considerations for the currently available	
Typical biopharmaceutical identification process flow	284
Outsourcing identifications	283
DuPont Qualicon RiboPrinter® System	282
Applied Biosystem MicroSeq® System	281
Genotypic	281
MIDI Sherlock®	280
BioMérieux Vitek® 2 System	279
BioMérieux API® System	278
Phenotypic	278
Identification Systems	278

Nina McAuliffe308Important Regulatory Requirements308Current Regulatory Trends312Contamination Risk Assessment313

х

н

Technology as a Role Player	314
Knowing Your Microbiome	315
Utilizing Your Data	316
Basic Examples	317
Summary	319
References	321
About the Author	322

Contents

12 CONSTRUCTING A MICROBIAL IDENTIFICATION LABORATORY: KEY COMPONENTS AND ELEMENT BENEFITS

Mary J. Griffin	
Introduction	323
Physical Layout Component	324
Physical Layout: safety element considerations	326
Physical Layout: efficiency element considerations	327
Organization Function Component	329
Organization Function: quality/compliance	
Organization Function: safety element considerations	330
Organization Function: efficiency element considerations	330
Routine Operations Component	
Routine Operations: quality/compliance element	
considerations	332
Stock culture program	332
Routine Operations: safety element considerations	333
Routine Operations: efficiency element considerations	333
Centralized microbial testing laboratory	334
Laboratory qualification	334
Conclusion	335
References	344
About the Author	

13	DETERMINATION OF OBJECTIONABLE	
	ORGANISMS IN NON-STERILE	
	PHARMACEUTICAL PRODUCTS —	
	A SCIENCE-BASED RISK ASSESSMENT	
	APPROACH	347
	Rhonda Ezell	
	Emerging Issues Regarding Objectionable Microorganisms	
	in Non-Sterile Pharmaceutical Products	348
	The Changing Patient Population	352

xi

xii Microbial Identification: The Keys to a Successful Program

Warning Letters and Form 483 Observations	353
Definition of Objectionable Microorganisms	356
Information from the FDA and the USP	357
Who Should Determine Whether a Microorganism	
is Objectionable?	359
The Risk Assessment	360
Conclusions	364
References	366
About the Author	368

14 LOOKING TO THE FUTURE: RAPID AND AUTOMATED MICROBIAL IDENTIFICATION TECHNOLOGIES 369 Alichael | Alillar 369

Michael J. Miller	
Introduction	369
A Brief History Lesson	370
Rapid and Automated Microbiological Technologies	371
Growth-Based ID and Presence/Absence Technologies	375
Utilization of biochemical and carbohydrate substrates	
for microbial identification	375
Use of selective media for the rapid and automated	
detection of specific microorganisms	377
Cellular Component-Based ID and Presence/Absence	
Technologies	377
Fatty acid analysis for microbial identification	377
MALDI-TOF mass spectrometry for microbial identification	378
SELDI-TOF mass spectrometry for microbial identification	378
Fourier Transform–Infrared (FT-IR) spectrometry for	
microbial identification	379
Optical Spectroscopic-Based ID and Presence/Absence	
Technologies	379
Elastic scattering for the detection of specific microorganisms	380
Inelastic scattering for the detection of specific	
microorganisms	381
Nucleic Acid Amplification-based ID and Presence/Absence	
Technologies	382
Ribotyping for bacterial identification and strain	
differentiation	383
PCR for the detection of specific microorganisms	384
SYBR® Green and Taqman® probes	385
MALTI-TOF mass spectrometry of PCR products	
for microbial identification	388

	Contents	xiii
	Electrospray TOF mass spectrometry of PCR	
	products for microbial identification	388
	Gene sequencing for microbial identification	389
	Detection of mycoplasma	390
	MEMS-Based ID and Presence/Absence Technologies	392
	Microfluidics or Lab-on-a-Chip Systems for	
	microbial identification	392
	Microarrays for microbial identification of mycoplasma	393
	Micro and nanocantilevers for microbial detection	394
	Summary	395
	References	395
	About the Author	396
15	IMPLICATIONS OF THE HUMAN MICROBIOME PROJECT TO	
	PHARMACEUTICAL MICROBIOLOGY	399
	Anthony M. Cundell	
	Introduction	399
	Implications to Pharmaceutical Microbiology	401
	Conclusions	404
	References	404
	About the Author	405

•••		
	Frank Hallinan	
	Introduction	407
	ICH Q10 and knowledge management	408
	KM and environmental microbiology	409
	Microbiological Data Challenges	410
	ICH Q10 and KM	412
	Conclusions	419
	Summary	420
	References	420

16 MICROBIAL KNOWLEDGE MANAGEMENT

Index

References	420
About the Author	421

423

407

xiv Microbial Identification: The Keys to a Successful Program

FOREWORD

My excitement about the publication of *Microbial Identifications: The Keys to a Successful Program* resonates with me on several levels. The first fulfills a need as an FDA regulatory microbiologist and the second as a university professor. Finally, the authors' contributions are vital because they are internationally recognized experts in their respective microbiological niches. Many of these individuals are personal friends of mine, and I have collaborated professionally with many of them for over 30 years. My respect for their credentials and communicative abilities is unqualified. For anyone who pursues a career in the pharmaceutical, medical device, cosmetic, biotechnology or related health care industries; and those who participate in the regulations of these industries this publication is a must-read.

Those of us who are career industry/government/academia microbiologists are well aware of numerous other publications that address the topic of Microbial Identification. Although one should not minimize their contribution to the fields of microbiology and healthcare, the difference between these preexisting references and the contents of *Microbial Identifications: The Keys to a Successful Program*, should be made clear. The defined chapters in this book

XV

present a well-balanced scientific rationale for the application of current technology together with personal experience/experiments in conjunction with data derived from these classic textbooks and peer review literature. The synergism of sound fundamental microbiology, emerging contemporary instrumentation and the application of today's risk-assessment priority will label this work as a new benchmark for literature excellence in pharmaceutical microbiology.

The ubiquitous presence of microorganisms, whether bacteria, fungi or viruses, have been the cause of contamination in people, processes and products throughout time. The need to identify and track the specific species when these outbreaks occur is critical for the epidemiology and trace-back activities associated with locating the microbial source in an effort to remediate the cause. The range of topics covered in the 16 chapters of this reference book will make the task unequivocally easier when investigating microbial problems and proposing pragmatic solutions or explanations. The authors are insightful, comprehensive and balanced in their prospective viewpoints and allow the reader the full availability of additional citations in support of their positions. This book is uniquely written in order to assist with the understanding and application of "The Keys" to address the microbial identification for the many industrial component and government responsibilities performed by pharmaceutical microbiologists. Individual scientific facts are always important, but detailed advice from experts, with decades of experience, is priceless.

The regulatory and industrial application of this book cannot be overemphasized. There has been a global realization regarding the importance of microbiological identification by governments and standard setting institutions. The risk assessment of microbial intrusion on a wide range of consumer products (or their manufacturing environments and components), both sterile and nonsterile, has become codified in regulatory requirements as well as compendial standards. *Microbial Identifications: The Keys to a Successful Program* clearly and effectively describes these changes so that the reader is not caught unprepared to meet the paradigm shift that has emerged from both domestic and international cGMP regulations. Foreword

Perhaps one may be confronted with the need to purchase a new rapid micro method (RMM) platform for microbial identification. The choices are numerous. Consequently, this makes selecting the best RMM for your purposes all the more challenging. The principles and benefits of most RMMs are clearly described in this book. The reader gets real solutions to the essential questions of "Why, When and How" when making these important decisions. I assure you that the reader will find an appropriate chapter to address their microbiological quandary.

I am grateful for the opportunity to write the foreword to this text book. Its contents will be beneficial to a multitude of readers: inclusive of industrial/government/academic microbiologists, quality assurance and control, risk management and decisionmaking personnel.

> Dennis E. Guilfoyle, Ph.D. Pharmaceutical Microbiologist Northeast Regional Laboratory US Food and Drug Administration

Disclaimer: These comments are those of the author only and do not necessarily represent the positions of the FDA.