Technical Report No. 84

Integrating Data Integrity Requirements into Manufacturing & Packaging Operations
Integrating Data Integrity Requirements into Manufacturing & Packaging Operations

Authors

Els Poff, Merck (Chair)
James Curry, PhD, Teva Pharmaceuticals
John Grealis, PhD, Novartis
Anne Pericone, Johnson & Johnson
Susan Schniepp, Regulatory Compliance Associates Inc.
Nader Shafiei, PhD, Sanofi
Ronald Tetzlaff, PhD, Parexel Consulting
Anthony Warchut, AC Warchut GMP Consulting

Contributors

Jeffrey Broadfoot, Emergent BioSolutions, Inc.
Derek Glover, Mylan
Maryann Gribbin, Faith & Royale Consultants
Tina Morris, PhD, American Association of Pharmaceutical Scientists
Rebecca Parrilla, U.S. Food and Drug Administration
Carmelo Rosa, PsyD, U.S. Food and Drug Administration
Anil Sawant, PhD, Merck
Christopher Smalley, PhD, ValSource, LLC
Integrating Data Integrity Requirements into Manufacturing & Packaging Operations

Technical Report No. 84

ISBN: 978-1-945584-19-0
© 2020 Parenteral Drug Association, Inc.
All rights reserved.

PDA®
Parenteral Drug Association
Table of Contents

1.0 INTRODUCTION AND SCOPE .. 1
 1.1 Purpose ... 1
 1.2 Scope .. 2

2.0 GLOSSARY AND ABBREVIATIONS 2
 2.1 Abbreviations .. 5

3.0 DATA INTEGRITY TRENDS AT INTERNATIONAL DRUG MANUFACTURERS ... 6
 3.1 Historical Perspective .. 6
 3.2 Regulatory Guidance .. 10
 3.3 Industry Best Practices .. 10

4.0 QUALITY RISK MANAGEMENT APPLIED TO DATA INTEGRITY ... 11
 4.1 Considerations in Assessing Risk 11
 4.2 Data Integrity Risk Management Model 13
 4.3 Data Vulnerability (9-Box) 15
 4.4 Using the Data Vulnerability Grid 17

4.5 Data Process Flow Maps ... 19

5.0 DATA INTEGRITY CONTROLS 21
 5.1 Potential Differentiation of Controls 22
 5.2 Methodology Used to Determine Differentiated Controls 23
 5.3 Areas of Differentiated Data Integrity Controls 25

6.0 CONTROLS FOR BIG DATA AS IT RELATES TO DATA INTEGRITY ... 38

7.0 REFERENCES .. 39

8.0 APPENDIX I: EXAMPLES — HOW TO USE THE 9-BOX VULNERABILITY GRID ... 40
 8.1 API Process Examples ... 40
 8.2 Finished Dosage Form Examples 46
 8.3 Sterility Assurance Examples 50
 8.4 Tablet Packaging Process Examples 54
 8.5 References for Appendix I 57

FIGURES AND TABLES INDEX

Figure 3.1.1-1 FDA Warning Letters—DI Issues Related to Production Activities by Country of Inspected Location 7
Figure 3.1.1-2 Incidence of Warning Letters Citing Production Activities by Product Type (API vs Finished Pharmaceuticals) 8
Table 3.1.3-1 EU Non-Compliance Reports—DI 8
Table 4.1.1-1 Human Factors Matrix 12
Figure 4.2-1 Data Integrity Risk Management Model 14
Table 4.2.1-1 Classification of Data Criticality 15
Table 4.2.2-1 Data Control Levels 15
Table 4.3-1 Data Vulnerability Grid (9-Box) – Example for Data Management Technology Controls 16
Table 4.4-1 Potential Areas of Data Integrity Vulnerability 18
Figure 4.5.1-1 Case 1: Granulation Operation (Paper-Based Manual Process without Automated Alerts) 21
Figure 4.5.1-2 Case 2: Granulation Operation (PLC-Controlled Process with Automated Alerts) 21
Figure 5.2-1 Methodology Used to Determine Differentiated Controls ... 23
Table 5.2-1 Categories Where Different Levels of Data Integrity Controls are Acceptable based on Criticality 24
Table 5.3.1-1 Data Integrity Control Grid for Storage of and Access to Completed and Archived Paper Records 26
Table 5.3.2-1 Data Integrity Control Grid for Issuance and Reconciliation of Paper Records 27
Table 5.3.3.1-1 Data Integrity Control Grid for Data Accuracy when Manually Recording without a Controlled Second Format 28
Table 5.3.3.2-1 Data Integrity Control Grid for Data Accuracy when Transcribing Manually Recorded Data into an Electronic System 29
Table 5.2.3.3-1 Data Integrity Control Grid for True Copy (Paper to Electronic) 30
Table 5.3.4-1 Data Integrity Control Grid for Access Controls for Electronic Systems 31
Table 5.3.5.1-1 ATRA Final Score and Frequency Review ... 33
Table 5.3.5.2-1 Example of How ATRA Tool is Used to Score a Filter Integrity Tester 35

www.pda.org/bookstore
<table>
<thead>
<tr>
<th>Table 5.3.6-1</th>
<th>Data Integrity Control Grid for Data Backup for System with Limited Storage Capacity</th>
<th>Table 8.3-1</th>
<th>Example 6: Low Criticality — Humidity Monitoring During Sieving of a Drug Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5.3.7.1-1</td>
<td>Data Integrity Control Grid for Data Export for Generation of Reports and Records</td>
<td>Table 8.3-2</td>
<td>Example 7: High Criticality — Filter Integrity Testing at the Point of Fill (Post-Use)</td>
</tr>
<tr>
<td>Table 5.3.7.2-1</td>
<td>Data Integrity Control Grid for Data Transfer and Migration Between Electronic Systems</td>
<td>Table 8.3-3</td>
<td>Example 8: Medium Criticality — Filter Identity Verification at the Point of Fill (Pre-Use—Post-Sterilization)</td>
</tr>
<tr>
<td>Table 8.1-1</td>
<td>Example 1: High Criticality API Reaction Controls Impurity Level</td>
<td>Table 8.3-4</td>
<td>Overview of the Packaging Process</td>
</tr>
<tr>
<td>Table 8.1-2</td>
<td>Example 2: Medium Criticality — Drying of API (LOD not a CQA)</td>
<td>Table 8.4-1</td>
<td>Example 10: High & Medium Criticality — Tablet Packaging</td>
</tr>
<tr>
<td>Table 8.1-3</td>
<td>Example 3: Low Criticality — Small Molecule API Batch-to-Batch Cleaning of Equipment within a Campaign</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 8.2-1</td>
<td>Example 4: High Criticality — Humidity Monitoring During Sieving of a Drug Substance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 8.2-2</td>
<td>Example 5: Medium Criticality — Humidity Monitoring During Sieving of a Drug Substance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>