

Technical Report No. 85

Enhanced Test Methods for Visible Particle Detection and Enumeration on Elastomeric Closures and Glass Containers

Enhanced Test Methods for Visible Particle Detection and Enumeration on Elastomeric Closures and Glass Containers Team

Authors

Core Team

Tia Bush, Amgen (Chair)
John Ayres, MD, Pharma Safety Solutions
Cecile Begat, Bayer
Antonio Burazer, Takeda
Fran DeGrazio, West Pharmaceutical Services
Carol Flynn, MEng, Corning
Abizer Harianawala, Stevanato Group
Paul Kinsey, GSK
Jahanvi Miller, MBA, PDA

Anthony Perry, Schott
John Shabushnig, Ph.D., Insight Pharma Consulting
Xu Song, MEng, Astra Zeneca
Hervé Soukiassian, MEng, BD
Andrew Spasoff, MS, Astra Zeneca
Amy Stanton, Amgen
Dorothee Streich, Ph.D., Bayer
Rick Watson, Merck

Elastomer Subteam

Ravi Patel, West Pharmaceutical Services (Co-Chair)
John Rech, West Pharmaceutical Services (Co-Chair)
Andrea DeSalvia, Aptar
Wadi Farach, MEng, Amgen

Gert Gregoire, MBA, Datwyler
Lucia Ino, West Pharmaceutical Services
Denise Schnaufer, Merck
Larry Staub, MS, Quality Advisor
Julie Suman, Next Breath
Rick Watson, Merck

Glass Subteam

Hervé Soukiassian, MEng, BD (Co-Chair)
Paul Kinsey, GSK (Co-Chair)
Alfred Breunig, Nipro Pharma Packaging
Benjamin Coutan, MBA, Gerresheimer
Wadi Farach, MEng, Amgen
Carol Flynn, MEng, Corning Incorporated

Martina Marchioro, Stevanato Group
Didier Morel, BD
Anthony Perry, Schott
Volker Rupertus, Schott AG
Daniele Zuccato, Schott AG

Contributors

Jean Bernard Theo, BMS
Buffy Hudson-Curtis, PhD, GSK
Swen Maas, Material Analytischer Service

Abriana Rozentsvayg, MS, Pfizer
Christian Schwarz, Amgen
Linda Wildling, PhD, Takeda

Acknowledgements

The authors wish to thank the Pharmaceutical Manufacturers Forum (PMF) for their encouragement and support in development of these studies. We wish to further thank the following companies for their participation in the studies documented herein: Amgen Inc., Aptar, Bayer AG, BD, Bristol Myers Squibb, Corning Inc, Datwyler, Gerresheimer AG, GlaxoSmithKline, Material Analytischer Service, Nipro Pharma Packaging, Stevanato Group, Schott, Takeda, and West Pharmaceutical Services.

Enhanced Test Methods for Visible Particle Detection and Enumeration on Elastomeric Closures and Glass Containers

Technical Report No. 85

ISBN: 978-1-945584-26-8
© 2021 Parenteral Drug Association, Inc.
All rights reserved.

Table of Contents

1.0 INTRODUCTION	1	5.0 GLASS CONTAINER INSPECTION METHOD.....	11
1.1 Purpose	1	5.1 Inspection of Ready-to-Use Empty Glass	
1.2 Scope	1	Containers	11
2.0 GLOSSARY AND ABBREVIATIONS.....	2	5.1.1 Operator Training for the Enhanced	
2.1 Abbreviations.....	3	Container Inspection Method.....	12
3.0 CURRENT STATE OF VISUAL INSPECTION FOR		5.1.2 Equipment and Setup	12
PARTICLES.....	3	5.1.3 Magnification Requirements To Inspect Glass	
3.1 Patient Risk Assessment.....	4	Containers.....	14
3.2 Existing Test Methods and Limitations	5	5.1.4 Glass Container Inspection Procedure	14
3.2.1 ISO Test Method 8871-3	6	5.2 Method Qualification Strategy and Detection	15
3.2.2 U.S. Pharmacopeia Methods	6	5.3 Study Design	17
3.2.3 European Pharmacopeia Methods	7	5.3.1 Normalizing the Particle Size	18
3.2.4 Japanese Pharmacopeia Methods.....	7		
3.3 Conclusion.....	7		
4.0 ELASTOMERIC CLOSURES TEST METHOD	8	6.0 CONCLUSION	19
4.1 Enhanced Closures Testing Method Development	8	7.0 REFERENCES.....	20
4.1.1 Size Threshold	8		
4.1.2 Novel Particle Size Measurement Tool	10	8.0 APPENDICES.....	21
4.2 Summary for Performing the Enhanced Closures		8.1 Appendix A. Additional Information on Enhanced	
Testing Method	10	Closures Testing Method Development.....	21
4.3 Method Qualification Strategy and Lessons		8.2 Appendix B. Method: Determination of Visible	
Learned.....	11	Particles and Fibers on Elastomeric Components by	
		Membrane Filtration and Microscopic Examination	34
		8.3 Appendix C. Additional Information on Empty	
		Glass Inspection Capability Studies	36
		8.4 Appendix D. Method: Visual Inspection of Empty	
		Glass Containers	44

FIGURES AND TABLES INDEX

Figure 3.0-1 FDA Recall Notices For Injectable Products, Years 2010-2019.....	3	Figure 5.1.2-3 Placement Of Container Within The Inspection Hood During Inspection.....	14
Figure 3.0-2 FDA Recall Notices For Particles In Injectable Products, Years 2010-2019.....	4	Figure 5.2-1 Locations Where Particles Were Seeded Into Or Onto Containers (Vials, Cartridges, And Syringes) In Prepared Test Kits	15
Table 3.2.2-1 Inspection Conditions and Acceptance Criteria for Visible Particles Found in the USP, EP, and JP.....	7	Table 5.2-1 Summary of Nominal Particle Size by Material	16
Table 4.1.1-1 Threshold Value to Use when Classifying Particles as Visible or Subvisible (by methods more sensitive as compared to the unaided eye).....	9	Table 5.2-2 Measurement Method Used to Determine Nominal Particle Size	16
Figure 4.1.2-1 Microscope Reticle Design For Elastomer Component Particle Analysis	10	Figure 5.2-2 Examples of Feret Max And Rect A And B Particle Size Measurements	17
Table 5.1-1 Key Attributes of Proposed Inspection Conditions and Method	12	Figure 5.3-1 Probability Of Detection For Particles And Fibers Of Varying Size During Inspection Of Empty Glass Containers.....	17
Figure 5.1.2-1 Visual Inspection Workstation.....	13	Figure 5.3.1-1 Probability Of Detection For Particles And Fibers Of Varying Size During Inspection Of Empty Glass Containers With Size Normalized To Apparent Area.....	18
Figure 5.1.2-2 Example Of Container Inspection Using Recommended Method And Relative Placement In The Inspection Hood.....	13		

Figure A1	Process Map of the Pilot (method development) and Qualification Strategy ..	22
Figure A2	Method Qualification Sample Generation Stratification	23
Figure A3	Process Map of Final Method Qualification Study	24
Figure A4	Interval plot of Supplier 1 results for particles >100 μm for each operator	25
Figure A5	Interval plot of replicate inspection results for Supplier 1, Operators 1 vs 3 and Operator 2 vs 3, for particles >100 μm	25
Figure A6	Interval plot of Supplier 1 results for particles >300 μm for each operator	26
Figure A7	Interval plot of replicate inspection results for Supplier 1, Operators 1 vs 3 & Operators 2 vs 3, for fibers >300 μm	26
Figure A8	Interval plot of Supplier 2 results for particles >100 μm for each operator	27
Figure A9	Interval plot of Supplier 2 group performance for particles >100 μm	27
Figure A10	Interval plot of Supplier 2 results for fibers >300 μm for each operator	28
Figure A11	Interval plot of Supplier 2 group performance for fibers >300 μm	28
Figure A12	Interval plot of Supplier 3 results for particles >100 μm for each operator	29
Figure A13	Interval plot of Supplier 3 group performance for particles >100 μm	29
Figure A14	Interval plot of Supplier 3 results for fibers >300 μm for each operator	30
Figure A15	Interval plot of Supplier 3 group performance for fibers >300 μm	30
Figure A16	Comparison of inspection performance by both supplier and operator for particles >100 μm	31
Figure A17	Box plot of performance by supplier for particles >100 μm	32
Figure A18	Comparison of inspection performance by both supplier and operator for fibers >300 μm	32
Figure A19	Box plot of performance by supplier for fibers >300 μm	33
Table B1	Orbital Shaker RPM Ranges.....	34
Figure B1	Flowchart showing the use of the specified reticle to determine status of any observed particles on the filter.....	37
Table C1	Summary of Nominal Particle Size by Material	38
Figure C1	Shape factor vs size for the particles and fibers seeded into test vials.....	38
Figure C2	Graphic comparison of test kit composition (kits A, B, and C)	39
Figure C3	Distribution of time required to complete inspection of test kit	40
Figure C4	Particle inspection results with inspectors having prior experience with empty containers (Yes) and those without such experience (No)	40
Figure C5	Fiber inspection results with inspectors having both prior experience (Yes) with empty containers and those without such experience (No)	41
Figure C6	Probability of detection for particles of differing type and size	41
Figure C7	Probability of detection for fibers of differing type and size	42
Figure C8	Probability of detection for particles in various container types and sizes.....	42
Figure C9	Probability of detection for fibers in various container types and sizes	43
Figure C10	Boruta Plot of inspection study results demonstrating factors significant to reliable inspection performance.....	43

Bethesda Towers
4350 East West Highway
Suite 600
Bethesda, MD 20814 USA
Tel: +1 (301) 656-5900
Fax: +1 (301) 986-0296
E-mail: info@pda.org
Web site: www.pda.org