Technical Report No. 87
Current Best Practices for Pharmaceutical Glass Vial Handling and Processing
Current Best Practices for Pharmaceutical Glass Vial Handling and Processing Team

Authors

Roger Asselta, Genesis Packaging Technologies
Bettine Boltres, SCHOTT AG, Germany
Alfred Breunig, Nipro PharmaPackaging Germany GmbH
Nicholas R. DeBello, DeBello & Associates LLC
Carol Rea Flynn, Corning Incorporated
Linda Lesh, Nipro PharmaPackaging Americas
James McFarland, Gerresheimer Glass, Inc.
Anthony Perry, SCHOTT AG
Tina Tubbs, Sanofi Pasteur
Dawn Watson, Merck & Co., Inc.

Contributors

Dave Machak, American Glass Research
Jim Nadlonek, Integrated Project Services, LLC (retired)
Joseph Norris, Smart Skin Technologies
Wendy Sunderland, Amicus Therapeutics
Current Best Practices for Pharmaceutical Glass Vial Handling and Processing

Technical Report No. 87

ISBN: 978-1-945584-29-9
© 2021 Parenteral Drug Association, Inc.
All rights reserved.
Table of Contents

1.0 INTRODUCTION .. 1
1.1 Purpose and Scope 1

2.0 GLOSSARY AND ABBREVIATIONS 2
2.1 Abbreviations ... 3

3.0 BEST PRACTICES FOR HANDLING GLASS VIALS ... 3
3.1 New Equipment Design, Installation, and Qualification ... 5
3.2 Considerations of Component Design and Variation ... 6
3.3 Real-Time Stress Monitoring ... 6

4.0 RISK ASSESSMENTS 7

5.0 GLASS VIAL HANDLING PROCESS 10
5.1 Packaging for Transport and Storage 11
5.2 Integrated Line with Multiple Transfer Points ... 11
5.2.1 Accumulators 12
5.3 Vial Washing ... 13
5.3.1 Washing Machines 13
5.4 Dry Heat Sterilization and Depyrogenation 14
5.4.1 Continuous Convection Tunnel 15
5.4.2 Points to Consider 16
5.4.3 Batch Depyrogenation Oven 16
5.5 Vial Filling .. 17
5.5.1 Impacts ... 17
5.5.2 Points to Consider 17
5.6 Stopper Placement 17
5.7 Lyophilization .. 17
5.7.1 Loading and Unloading 18
5.7.2 Lyophilization Process Concerns 18
5.7.3 Seating the Stopper 18
5.7.4 Points to Consider 20
5.8 Capping .. 20
5.8.1 Impacts ... 20
5.8.2 Points to Consider 20
5.9 Terminal Sterilization 22
5.10 External Washing 22
5.11 Inspection .. 23
5.11.1 Manual Inspection 23
5.11.2 Semi-Automated Inspection 23
5.11.3 Automated Inspection 23
5.11.4 Inspected Vial Ejects 23
5.11.5 Points to Consider 24
5.12 Off-Loading ... 24
5.13 Vial Labeling ... 24
5.14 Secondary Packaging 25
5.14.1 Points to Consider 25
5.15 Finished Product Storage and Handling 25

6.0 CONSIDERATIONS FOR PREVENTING ADDITIONAL DAMAGE 25
6.1 Ready-to-Use Vials 25
6.2 Robotic Automation 25
6.3 Outer Surface Treatments or Coatings 26

7.0 REFERENCES ... 27

8.0 APPENDIX I: FUNDAMENTALS OF GLASS SCIENCE 27
8.1 Coefficient of Thermal Expansion 28
8.2 Stress Inside the Glass 29
8.2.1 Melting and Solidification Behavior of Glass ... 29
8.2.2 Physical Definition of Stress 29
8.3 Mechanical Strength of Glass 32
8.3.1 Ductile versus Brittle Materials 32
8.3.2 Practical Strength 32
8.3.3 Tensile and Compressive Stress 33
8.3.4 Surface Condition and its Impact on Practical Strength ... 34
8.4 Adsorption Layer on the Glass 35
8.5 Chemical Strengthening 35
8.6 References for Appendix I 35

9.0 APPENDIX II: INVESTIGATIONS 36
9.1 Initial Investigation 36
9.2 Root Cause Analysis 37
9.3 Corrective and Preventive Actions 38
9.4 References for Appendix II 38

10.0 APPENDIX III: GLASS BREAKAGE INVESTIGATION WORKSHEET AND CHECKLIST 39
FIGURES AND TABLES INDEX

Table 3.0-1 General Glass Handling Considerations.. 4
Figure 3.1-1 Screw Feed, Star Wheel, and Potential Pinch Points.. 6
Figure 3.3-1 Example of a Vial Diagnostic Drone and Associated Data Visualization Technology .. 6
Table 4.0-1 Typical Risk Management Tools 8
Table 4.0-2 Example of Risk Priority Number (RPN) Factor Determination............................ 9
Figure 5.0-1 Generic Glass Vial Handling Process..... 10
Figure 5.2.1-1 Example of a Rotary Accumulation Table.. 12
Figure 5.2.1.1-1 Abrasion rings .. 13
Figure 5.3.1-1 Diving Nozzle Rotary Washing Machine. 14
Figure 5.4-1 Stuck Marks .. 15
Figure 5.4.1-1 Typical Depyrogenation Tunnel Layout with a Preheat Zone, a Hot Zone, and a Cooling Zone.. 16
Figure 5.7.2-1 Vial Fracture Due to Expansion of a Product Component.......................... 19
Figure 5.7.2-2 Lensed Vial Due to Expansion of a Product Component.................................. 19
Figure 5.7.3-1 Hydraulic Ram for Stoppering Lyophilized Vials .. 19
Figure 5.8-1 Capping Loads .. 21
Figure 5.8.1-1 Examples of Vial Variability from PDA TR 43 .. 21
Figure 5.8.1-2 Examples of Surface Damage and Breakage Due to Contact with Sealing Disc or Rail .. 22
Figure 5.11.1-1 Manual Inspection Hood 23
Figure 5.11.3-1 Automated Inspection System........ 24
Figure 6.1-1 Ready-to-Use Vial System............... 25
Table 8.0-1 Overview of Glasses Used in Pharmaceutical Primary Packaging by Classification and Standards 28
Figure 8.1-1 Comparison of Different Glass Types and Wall Thicknesses.. 29
Figure 8.2.1-1 Volume-Temperature Diagram of a Crystal and of Glass.................................... 30
Figure 8.2.2-1 Tensile and Compressive Force Schematic.. 30
Figure 8.2.2.1-1 Schematic Representation of Heating and Forming of a Glass Tube into a Vial........ 31
Figure 8.2.1.1-2 Polarized Light Image of Annealed, Partially Annealed, and Not Annealed Vials.. 31
Figure 8.3.2-1 Stress intensity Factor (K) According to Griffith Theory 33
Figure 8.3.3-1 Vial with Compressive and Tensile Stress Areas .. 33
Figure 8.3.4-1 Example of Decreasing Glass Practical Strength by Surface Flaws Induced through Pharmaceutical Processing 34
Figure 8.4-1 Visualization of the Reaction of Water Vapor from Humidity and the Glass Surface .. 34