PDA Points to Consider for Aseptic Processing Task Force

Harold Baseman, Valsource, LLC (Chair)
Gabriele Gori, GlaxoSmithKline (Co-Chair)
Masahiro Akimoto, Toray Industries
Marc Besson, Sanofi-Pasteur
Jette Christensen, Novo Nordisk
Veronique Davoust, Pfizer
Phil DeSantis, DeSantis Consulting Associates

Richard Johnson, PDA Staff
William Miele, Ph.D., Pfizer
Rainer Newman, Consultant
Vincent O'Shaughnessy, Amgen
Mike Sadowski, Baxter
Edward Tidwell, Ph.D., Baxter
Chuck Reed, Weiler Engineering Inc.
Introduction

This document presents the views of the Parenteral Drug Association (PDA). The document is designed to communicate PDA’s thoughts and encourage further dialog with industry, health authorities, and suppliers of technology and materials while taking into consideration the changes and needs of the modern, global, sterile, healthcare product manufacturing industry. It does not represent a standard or regulatory guidance.

In 2003, PDA issued Points to Consider for Aseptic Processing. Much has been learned by the industry since that document was published. In an effort to address the impact of this knowledge gained, PDA has assembled a task force of subject-matter experts from industry with the purpose of revising that report. The revision provides positions on current topics, best practices, and areas of clarification that are important to the manufacturing of quality sterile products.

Many of the topics have been included in the revision as a result of input from PDA members at conferences and meetings. It is the intention of the task force to issue Part 1 of the revised report, which addresses initial topics, and then publish subsequent parts on other subjects. Parts may be added as additional input is received from industry and members. It is anticipated that the scope of the revised report may be further broadened to include other related topics.

The revised report topics are organized into categories. Each topic discussion begins with a problem statement in the form of a question about issues or points needing clarification in that specific topic. Recommendations from the PDA task force are then presented as an answer to the question. The rationale and references for each recommendation follow.

Primarily, the topics align with those addressed in the 2003 report, although the revision addresses some additional topics. Part 1 and Part 2 of this revision are meant to replace the 2003 Points to Consider for Aseptic Processing.*

*Note: For comparative purposes, the Chapters and Topics are organized in this document in the same order as the 2003 document. Not all Topics are included. Chapter III, as well as potential additional Topics within Chapters I-II and IV-VII, will be addressed in Part 2 of this Points to Consider, which PDA will publish subsequently.

Part 1 of the revised report presents points to consider on topics related to the physical environment in which aseptic processing is conducted, monitoring of that environment, cleanroom personnel, and material transfer. It also includes points to consider on aspects of filter-integrity testing and water for injection (WFI) preparation. Part 2 is expected to include points to consider in topics related to aseptic-process simulation and validation, “modern” blow fill seal technology, additional restricted access barrier systems (RABS) and isolators, cleaning, disinfection and sterilization, and critical utilities.

As the task force contemplated specific areas to discuss in the revision, five guiding and linked principles for improvement in sterile healthcare products emerged that the task force used to develop these points:

1. Science- and risk-based approaches should be used to obtain information needed to make decisions related to the evaluation, design, qualification, operation, and monitoring of sterile product manufacturing processes. Risk- and science-based approaches should be used to develop and implement control strategies and acceptance criteria designed to ensure the establishment and maintenance of manufacturing conditions that affect the sterility of products. Sterile drug-product-manufacturing processes and testing requirements should have a basis in and relevance to risks to product quality and patient safety. Risk management and assessment methods should be developed not only to identify risk, but also to allow the improvement of processes and control strategies.
2. Where feasible, the use of newer technologies should be considered to mitigate or reduce risks to product quality identified in manufacturing processes and operations. It is important that companies involved in the manufacture of sterile drug products be encouraged to identify and consider the use of modern technologies and that regulatory guidance enable this by presenting expectations that encourage the use of these technologies. Technologies and facility, equipment, and process designs that protect products and product contact surfaces from personnel and environmental contact and that provide more reliable and useful information are particularly beneficial in order to reduce the risk of microbiological contamination during aseptic processing.

3. The effectiveness of certain traditional testing and monitoring methods as control strategies should be reevaluated. As technology has been introduced and knowledge has been acquired, the usefulness and value of testing procedures have changed. Testing and monitoring should be designed and performed, and the results should be evaluated, based on scientific value, risk to product quality and patient safety, and usefulness to determination of process control. Where testing and monitoring approaches and methods no longer meet the needs or are not optimal, their replacement or modification should be considered. The use of outdated testing and monitoring methods has the potential to add risk, provide a false sense of control, be ineffective, and deploy resources in a manner that may not be efficient or optimal, thus detracting from the development and use of more effective testing and monitoring approaches.

4. New product/container presentations, therapies, and technologies present challenges to traditional and existing methods for the development, manufacture, validation, and testing of sterile products. To meet these challenges, an emphasis on thorough technical and process understanding, science, and risk will become important to design effective means to ensure product quality. Companies should be encouraged to seek out the most effective means rather than try to fit traditional methods to these new products, technologies, and therapies.

5. When scientific approaches are similar and agreed upon, global health authority requirements and guidance should be consistent in technical language and definition. It is important that harmonized technical and regulatory language, where possible, be consistent with approaches presented in other similar guidance. This practice should promote clarity of global regulatory expectations and reduce the risk of misunderstanding and redundant efforts.
Table of Contents

I. PHYSICAL ENVIRONMENT ... 1
 (Additional topics may be addressed in Part 2)

Topic A.1: Airflow Velocity .. 2
 Where should airflow velocity measurements be taken, with respect to a filling line or other aseptic processing areas?

Topic A.2: Airflow Velocity Measurements ... 3
 Is an airflow velocity of 0.45 m/s ± 20% a requirement at the working surface in a critical filling zone?

Topic A.3: Airflow Velocity Measurement Frequency .. 4
 When do airflow velocity measurements have to be taken?

Topic B.1: Airflow Visualization .. 5
 What is the purpose of airflow visualization studies (smoke studies) and how often should they be performed?

Topic B.2: Airflow Visualization Recording ... 6
 Should airflow pattern studies be recorded?

Topic C: Grade A Environment Over Cappers ... 7
 What are the recommended environmental conditions for capping aseptically processed, stoppered vials when the capping takes place outside of a Grade A environment?

Topic D: Differential Pressure ... 8
 What should be the air pressure differential between zones of differing cleanliness classification (e.g., between Grade B and Grade C zones)?

Topic E: Testing of HEPA Filters .. 10
 What is the frequency with which HEPA filters should be tested?

Topic F: HEPA Filter Patching ... 11
 Can HEPA filters be patched? If so, what is the maximum allowable patch size?

Topic H: Laminar Versus Unidirectional Airflow .. 12
 Should air flow in Grade A critical zones be laminar or unidirectional?

Topic I: Length and Radii of Airborne Sampling Tubing .. 13
 How should tubing for total particulate sampling be configured?

Topic J: RABS and Isolators—Aseptic Processing Technologies ... 14
 What “barrier” methods should be used to reduce the risk of microbiological contamination from human intervention in aseptic processing systems?

Topic L: Environmental Clean-Up Period Determination (at Rest) ... 16
 How much time is needed to reestablish acceptable cleanroom conditions after disruption of these conditions?

Topic M: Air Locks ... 17
 Are separate air locks required for materials and for personnel into critical areas in order to prevent contamination?

Topic N: “At-rest” and “In-Operation” Status .. 18
 Should we test or monitor cleanrooms for total particulates in “at-rest” or “as-built” conditions in addition to “in-operation” conditions?
Topic O: Sample Volume for Classification

What is the air volume to be sampled for classification purposes of cleanrooms, in relation to particles?

Topic P: ≥0.5µm and ≥5µm Total Particle Monitoring

Should limits be applied for ≥5 µm particle monitoring for Grade A environments?

II. ENVIRONMENTAL MONITORING

(Additional topics may be addressed in Part 2)

Topic A: Setting Alert and Action Levels

What are the recommended alert and action levels for aseptic processing areas?

Topic B: Environmental Monitoring Alert and Action Levels

Should environmental monitoring alert and action levels be considered as specifications?

Topic C: Environmental Monitoring—Relationship to Batch Release

What is the relationship between environmental monitoring data from Grade A/B areas and batch release?

Topic D: Location, Frequency, and Duration of Viable and Total Particulate Monitoring

What should the location, frequency and duration of viable and total particulate environmental monitoring in classified cleanroom areas be?

Topic I: Identification of Environmental Isolates

What microbial identification strategy is appropriate for environmental monitoring samples?

Topic J: Growth-Promotion Testing of Environmental Monitoring Media

What constitutes a scientifically appropriate program for routinely growth promotion testing of environmental monitoring media?

Topic K: Incubation Temperatures for Environmental Monitoring Samples

What incubation conditions are scientifically appropriate for environmental monitoring samples?

III. VALIDATION

To be addressed in Part 2

IV. PERSONNEL

(Additional topics may be addressed in Part 2)

Topic A: Glove Monitoring

When and under what conditions should gloves be monitored or changed?

Topic B: Aseptic Personnel Qualification Program

What is the process to qualify personnel to work in or access the aseptic processing area (Grade A/B area)?

Topic C: Aseptic Processing Area Access Control

How should manufacturers control access of personnel into the aseptic processing area?

Topic D: Performance of Environmental Monitoring

Who should perform environmental monitoring?
Topic E: Supervision in the Aseptic Processing Area
What is the degree of oversight necessary to effectively monitor an aseptic processing area?

Topic F: Personnel Monitoring Frequency and Location
What should be the frequency and location of personnel monitoring?

Topic G: Sterile Gown Usage
Must a sterile gown be used for each entry into the aseptic processing area?

Topic H: Occupancy in the Aseptic Processing Area
What is the proper number of people to be present in an aseptic processing area?

Topic J: Personnel Practices for Hygiene and Hand Washing
What are the allowable personnel-related conditions for gowing and entering a cleanroom?

V. MATERIAL TRANSFER
(Additional topics may be addressed in Part 2)

Topic A: Entry of Equipment and Material into an Aseptic Processing Area
What must be done when materials and/or equipment are being transferred into a Grade A/B aseptic processing area?

Topic B: Sterile Hold Times for Materials
How should sterilized material hold times be developed and implemented?

VI. CLEANING, DISINFECTION AND STERILIZATION

Topic J: Pre-Use, Post Sterilization Integrity Test of Sterilizing Filters (PUPsIT)
Should a pre-use, post-sterilization integrity test of sterilizing filters be performed?

Topic L: Use of Two Sterilizing-Grade Filters for Product Sterile Filtration
Should redundant (in-series) sterilizing filters be used, and if so, where should filters be located?

VII. CRITICAL UTILITIES
(Additional topics may be addressed in Part 2)

Topic A: Methods of Production
What methods of production for WFI should be employed?