

# **Safety Thresholds and Best Demonstrated Practices for Extractables and Leachables in Parenteral Drug Products (Intravenous, Subcutaneous, and Intramuscular)**



# Safety Thresholds and Best Demonstrated Practices for Extractables and Leachables in Parenteral Drug Products (Intravenous, Subcutaneous, and Intramuscular)



ISBN: 978-1-945584-30-5

28 October 2021

Submitted to the PQRI Development Technical Committee, PQRI Steering Committee and US Food and Drug Administration by the PQRI PODP Leachables and Extractables Working Group



**Safety Thresholds and Best Demonstrated Practices for Extractables and Leachables in  
Parenteral Drug Products (Intravenous, Subcutaneous, and Intramuscular)**

**28 October 2021**

**Submitted to the PQRI Development Technical Committee,  
PQRI Steering Committee and US Food and Drug Administration  
by the  
PQRI PODP Leachables and Extractables Working Group**

## Forward

Leachables in drug products that originate from the components used in packaging, delivery and manufacturing systems can compromise the quality of drug products and impact patient safety. The materials of construction associated with these components should be assessed for suitability in early drug development phases based on extractable profiles and correlated to potential and confirmed leachables. In 1999 the PQRI Leachables and Extractables (L&E) Working Group was established with the goal of reducing leachable uncertainty in Orally Inhaled and Nasal Drug Products (OINDP), using a science and risk-based approach. The Working Group was made up of highly experienced scientists including toxicologists, analytical chemists, and others, from industry, government, and academia. The culmination of these efforts resulted in E&L recommendations to the USFDA. "Safety Thresholds and Best Practices for Extractable and Leachables in OINDP" was published in 2006 and since has been recognized by FDA and global regulatory authorities.

In 2008 the Parenteral and Ophthalmic Drug Product (PODP) L&E Working Group was formed to extrapolate the OINDP risk-based approach for evaluation and safety qualification of extractables and leachables in PODP. Specific factors associated with parenteral and ophthalmic drug products were considered that included patient population, dose, duration, and additional product-dependent characteristics. The PODP L&E Working Group conducted and evaluated the results of extraction studies on polymeric materials and evaluated a database of over 600 potential leachables using existing toxicological qualification approaches to justify thresholds for PODP. The proposed PODP identification and qualification thresholds were published in a 2013 manuscript followed by workshops. Subsequently, recommendations for "Safety Thresholds and Best Demonstrated Practices for Extractables and Leachables in Parenteral Drug Products (PDP)," was thoroughly examined and consideration was given to factors related to new modalities. After rigorous review from industry and regulators a consensus was reached.

This document describes recommendations for E&L assessments of small volume, large volume parenterals and prefilled syringes with additional considerations for biological products. The field of biological products is rapidly advancing and with unique risks to product quality and patient safety. Study designs for E&L will consider intended use and regulatory jurisdiction and should be discussed early with the Regulatory Agency to understand proper application of the analytical evaluation threshold (AET), extraction concentrations, solvents, exposure conditions and analysis. There are unique considerations for ophthalmic drug products (ODP), and safety thresholds do not apply. Because of the unique considerations for ophthalmic drug products, extractables and leachables assessments are described in a separate manuscript entitled, "Principles for Management of Extractables and Leachables in Ophthalmic Drug Products." PDA Journal of Pharmaceutical Science and Technology February 2022, pdajpst.2022.012744. DOI: <https://doi.org/10.5731/pdajpst.2022.012744>. Parenteral products administered by the intrathecal, intra-cerebroventricular, intra-articular, epidural, and perineural routes are out of scope. The PDP recommendations were the result of understanding a broad range of E&L applications over several years of building consensus with leaders in scientific and regulatory community. The views expressed in these documents are not necessarily those of individual companies or US Food and Drug Administration.

Contributions of individuals from the core team, extended teams, reviewers and advisors are sincerely appreciated. The members of the PODP L&E Working Group acknowledges the Product Quality Research Institute and its member organizations for providing this forum to make this collaboration possible. We also would like to recognize the dedicated scientists in volunteer laboratories that provided the essential data to make the recommendations possible.

The Working Group hopes that the recommendations contained in this document will serve to guide the pharmaceutical development process for PDP and facilitate the approval and manufacture of safe, effective, and quality medicines.

On behalf of the PQRI PODP L&E WG

Diane Paskiet, MS  
Chair of PODP L&E Working Group  
Chair of PQRI Steering Committee  
Representing the Parenteral Drug Association

Douglas Kiehl, MS  
Chair of Development Technical Committee  
Representing the United States Pharmacopeia

## Authors

Diane Paskiet, West Pharmaceutical Services Inc. Exton PA, USA  
Douglas J. Ball, D&B ChemTox, LLC, Southbury, CT, USA  
Dennis Jenke, Triad Scientific Solutions, LLC, Hawthorn Woods, IL, USA  
Stephen A. Barat, HTG Molecular, Tucson, AZ, USA  
Steve Beck, Xellia Ltd, Zagreb, Croatia  
William P. Beierschmitt, D&B ChemTox, LLC, Southbury, CT, USA  
James Castner, Pharma Interface Analysis, MA, USA  
Thomas Egert, Boehringer Ingelheim Pharmaceuticals, Inc., Ingelheim/Rhein, Germany  
Thomas Feinberg, FNA Pharma Consulting, LLC, Chapel Hill, NC, USA  
Alan Hendricker, Becton Dickinson, Raleigh, NC, USA  
Frank Holcombe, Jr., US Food and Drug Administration (USFDA), Silver Spring, MD, USA  
Christopher Houston, Bausch & Lomb, Rochester, NY, USA  
Desmond G. Hunt, United States Pharmacopeia, Rockville, MD, USA  
Abigail Jacobs, US Food and Drug Administration (USFDA), Silver Spring, MD, USA  
David Jones, Medicines and Healthcare products Regulatory Agency (MHRA), London, UK  
Douglas Kiehl, Eli Lilly and Company, Indianapolis, IN, USA  
Jacqueline A. Kunzler, Baxter Healthcare Corporation, Round Lake, IL, USA  
Michael Lynch, Pfizer Groton, CT, USA  
Ingrid Markovic, US Food and Drug Administration (USFDA), Silver Spring, MD, USA  
Kumudini Nicholas, Health Canada, Ottawa, ON, Canada  
Daniel Norwood, FNA Pharma Consulting, LLC, Chapel Hill, NC, USA  
Mary Richardson, Iuvo BioScience, Rush, NY, USA  
Timothy W. Robison, US Food and Drug Administration (USFDA), Silver Spring, MD, USA  
Mike Ruberto, Materials Needs Consulting LLC, Montvale, NJ, USA  
Edward Smith, Packaging Science Resources, Audubon, PA, USA  
Cheryl LM Stults, C & M Technical Consulting, LLC, San Mateo, CA, USA  
Alisa Vespa, Health Canada, Ottawa, ON, Canada

**Observations made, opinions expressed and conclusions drawn in this publication reflect the views of the authors acting in their role as members of the PQRI Leachables and Extractables Working Group and should not be construed to represent the views or policies of their affiliated organizations.**

## Acknowledgments

### Laboratory Services

#### *Baxter Healthcare Corporation, Round*

*Lake, IL, USA*

Roopang Shah

Marek Ciesla

Frank (Yousheng) Hua

#### *Pfizer, Groton, CT, USA*

Cindy Magee

Miguel Sandoval

Art Shaw

#### *Becton Dickinson, Raleigh, NC, USA*

Alan Hendricker

John Lennon

#### *Bausch & Lomb, Rochester, NY, USA*

Christopher Houston

John Rider

#### *Boehringer Ingelheim Pharmaceuticals, Inc.,*

*Ridgefield, CT, USA & Ingelheim/Rhein, Germany*

Daniel L. Norwood

Scott Pennino

James O. Mullis

Thomas Egert

Jurgen Mattes

David Strassburger

#### *Catalent Pharma Solutions, Morrisville, NC, USA*

Paul Cvetich

Kimberly Davis

Michelle Cree

Tom Feinberg

### Toxicology Services and Analysis

#### *Pfizer Groton, CT, USA DEREK/Toxtree*

Russell Naven

Patricia Ellis

#### *TOX-RSA, LLC*

Angela Howard

Brenda Seidman

#### *ELSIE Consortium*

*Washington, D.C., USA*

#### *Intertox, Seattle, WA, USA*

Rick Pleus

Gretchen Bruce

#### *Nelson (Toxikon) Leuven, Belgium*

Piet Christiaens

Christopher Brynczka

### Biologics Subteam

#### *Johnson & Johnson (Momenta Pharmaceuticals)*

*Cambridge, MA, USA*

Jamie Tsung

### Ophthalmics Subteam

#### *Amgen, Thousand Oaks, CA, USA*

Kim Li

#### *AbbVie (Allergan), Irvine, CA, USA*

Tao Wang

Brenda Birkestrand Smith

Andrea Desantis Rodrigues

### Suppliers

*Cameo Crafts Ltee-Ltd Saint-Laurent, Quebec, Canada*

*BASF Schweiz AG, Basle Switzerland (CIBA): Michael Ruberto*

*Schott Mainz, Germany: Horst Koller*

*Teknor Apex, RI, USA: Peter Gallard Pawtucket*

*West Pharmaceutical Services Inc. Exton PA, USA: Jeff Smythe*

## US Food and Drug Administration: Advisors/Reviewers

|                                                                                                                                           |                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Xiaochun Chen, Division of Pharmacology-<br>Toxicology for Immunology &<br>Inflammation (DPT-II), CDER                                    | Dan Mellon, Division of Pharmacology-Toxicology<br>for Neurology (DPT-N), CDER |
| Eleni Salicru, DPT-II, CDER                                                                                                               | Carlic Huynh, DPT-N, CDER                                                      |
| Luqi Pei, DPT-OII, CDER                                                                                                                   | Misol Ahn, DPT-N, CDER                                                         |
| Jackye Peretz, DPT-II, CDER                                                                                                               | Newton Woo, DPT-N, CDER                                                        |
| David Joseph, DPT-II, CDER                                                                                                                | Irene Surh, DPT-N, CDER                                                        |
| Taro Akiyama, DPT-CHEN, CDER                                                                                                              | Katie Sokolowski, DPT-N, CDER                                                  |
| Rama Dwivedi, DPT-CHEN, CDER                                                                                                              | Jaime D'Agostino, DPT-N, CDER                                                  |
| Huiqing Hao, Division of Metabolic and<br>Endocrine Drug Products (DMEP), DPT-<br>CHEN,                                                   | Jay Chang, DPT-N, CDER                                                         |
| Sree Rayavarapu, Division of<br>Pharmacology & Toxicology for<br>Cardiology, Hematology, Endocrinology<br>and Nephrology (DPT-CHEN), CDER | Timothy McGovern, Office of New Drugs Immediate<br>Office (OND IO), CDER       |
| Marlene Kim, Office of the Commissioner                                                                                                   | Jane Sohn Office of Nonprescription Drug Products<br>(ONDP), CDER              |
| Naomi Kruhlak, Division of Applied<br>Regulatory Science (DARS), CDER                                                                     | Julia Pinto Office of Product Quality (OPQ), CDER                              |
| Curran Landry, DARS, CDER                                                                                                                 | Valerie Amspacher, OPQ, CDER                                                   |
| Lidiya Stavitskaya, DARS, CDER                                                                                                            | Melanie Mueller, Office of Generic Drugs (OGD),<br>CDER                        |
|                                                                                                                                           | Narendranath Reddy Chintagari, OGD, CDER                                       |

**PQRI Secretariat: Faegre Drinker Biddle & Reath LLP, Washington, D.C., USA**

Lee Nagao  
Jillian Brady  
Mary Devlin Capizzi  
Dede Godstrey

## Table of Contents

|                                                                                       |           |
|---------------------------------------------------------------------------------------|-----------|
| <b>Part 1. Introduction and Summary of Recommendations .....</b>                      | <b>11</b> |
| I.    Introduction.....                                                               | 11        |
| II.    Background and Scope .....                                                     | 11        |
| III.    Recommendations .....                                                         | 15        |
| IV.    References.....                                                                | 16        |
| <b>Part 2. Justification of Thresholds for Leachables in PDP .....</b>                | <b>18</b> |
| I.    Introduction.....                                                               | 18        |
| II.    Parenteral Drug Products (PDP) Leachables Thresholds .....                     | 20        |
| A. QT Verification.....                                                               | 23        |
| B. SCT Verification.....                                                              | 26        |
| III.    Conclusion .....                                                              | 26        |
| IV.    References.....                                                                | 30        |
| <b>Part 3. Best Practices for Extractables and Leachables Assessment in PDP .....</b> | <b>32</b> |
| I.    The Link between OINDP and PDP Best Practice Recommendations.....               | 32        |
| II.    Material/Component Characterization and Selection.....                         | 34        |
| III.    Characterization Studies .....                                                | 36        |
| IV.    Leachables Assessment for Parenteral Drug Products .....                       | 40        |
| A. Parenteral Drug Product Dosage Forms .....                                         | 41        |
| B. Migrants and Migration .....                                                       | 48        |
| C. Simulation Studies .....                                                           | 49        |
| D. Analytical Uncertainty .....                                                       | 51        |
| V.    Conclusion .....                                                                | 52        |
| VI.    References.....                                                                | 52        |
| <b>Part 4. Special Topics: Considerations for Biological Products .....</b>           | <b>54</b> |
| I.    Introduction.....                                                               | 54        |
| II.    Context of Biological Products .....                                           | 55        |
| III.    Quality Considerations for Biological Products.....                           | 56        |
| IV.    Manufacturing and Packaging Components in Contact with Biological Products ..  | 58        |
| V.    Suitability of Packaging and Delivery Systems .....                             | 63        |
| VI.    Considerations for Qualification of CCS and Delivery System Components .....   | 63        |
| VII.    Lifecycle Management Example - Injectable Delivery Systems .....              | 65        |
| VIII.    Conclusion .....                                                             | 66        |
| IX.    References.....                                                                | 67        |
| <b>Part 5. Appendices .....</b>                                                       | <b>70</b> |
| Appendix 1 List of Extractables and Leachables in the Database .....                  | 70        |
| Appendix 2: Method for Establishing the PDE .....                                     | 89        |
| Appendix 3: Links to Publications by the PODP Working Group .....                     | 92        |
| Appendix 4: Glossary of Acronyms and Abbreviations.....                               | 93        |

## List of Tables

|                  |                                                                                                         |           |
|------------------|---------------------------------------------------------------------------------------------------------|-----------|
| <b>Table 3-1</b> | <b>Types of Controlled Extraction Studies .....</b>                                                     | <b>35</b> |
| <b>Table 3-2</b> | <b>Example of Estimated Leachable AET Values for SVPs and LVPs as a Function of Container .....</b>     | <b>43</b> |
| <b>Table 3-3</b> | <b>Example of Estimated Leachable AET Values for SVPs and LVPs as a Function of Dose Volume.....</b>    | <b>44</b> |
| <b>Table 3-4</b> | <b>Example Estimated Extractable AET Values for SVPs and LVPs as a Function of Component Mass .....</b> | <b>46</b> |
| <b>Table 4-1</b> | <b>Typical Applications for Manufacturing or Packaging Components and Risk Considerations .....</b>     | <b>60</b> |
| <b>Table 4-2</b> | <b>Examples of Component Suitability Factors .....</b>                                                  | <b>63</b> |
| <b>Table 4-3</b> | <b>Examples of Common Formulation Excipients and Impact to Biological Products.....</b>                 | <b>64</b> |
| <b>Table 5-1</b> | <b>Values Used in the Calculations in this Document (from the ICH Q3D Guidance) .....</b>               | <b>90</b> |

## List of Figures

|                   |                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| <b>Figure 2-1</b> | <b>Process Flow for Qualification of Leachables in PDP .....</b>                                                                                                                                                                                                                                                                                                                                                   | <b>29</b> |
| <b>Figure 3-1</b> | <b>Example extractables profiles, in the form of Gas Chromatography/Mass Spectrometry Total Ion Chromatograms, from a typical PDP elastomer. [3] Top: 50:50 isopropanol:water; Middle: pH 9.5 aqueous; Bottom: pH 2.5 aqueous. Note that numbered extractables were identified, and ISTD refers to added internal standards. This type of extraction would represent that done for a multi-use component. ....</b> | <b>39</b> |
| <b>Figure 3-2</b> | <b>Consideration of the Analytical Challenge Associated with the Daily Dose Volume. The value of the AET is inversely proportional to the daily dose volume. Thus, drug products with a high daily dose volume will have low AETs. ....</b>                                                                                                                                                                        | <b>50</b> |
| <b>Figure 4-1</b> | <b>Schematic of CCS Integration Over Biological Product Lifecycle.....</b>                                                                                                                                                                                                                                                                                                                                         | <b>58</b> |