Biological Indicators for Sterilization Processes

Margarita Gómez and Jeanne Moldenhauer

PDA
Bethesda, MD, USA
DHI Publishing, LLC
River Grove, IL, USA

www.pda.org/bookstore
CONTENTS

Introduction xix
Margarita Gómez and Jeanne Moldenhauer

I Biological Indicators: Historical Perspective and General Principles 1
Irving J. Pflug
What Are BIs, Why Do We Use Them And How Do They Measure? 2
Historical Perspective Of Biological Indicators in Microbial Control 3
Food vs. Health Industries 3
Early BIs 4
The 50-year Period from 1880 until 1930 5
 Comments on the Period 1920 to 1950 5
 1950 to today 5
Configuration 6
 Spore Suspension 6
 Spore Strip 6
 Self-contained 6
Bacterial Spores Used As Biological Indicators 7
 Widely-Recognized Test Microorganisms (WRTMs) 7
 Characteristics of Bacterial Spores that Affect Their Use as Test Microorganisms 8

iii

www.pda.org/bookstore
Contents

References 46
About the Author 54

3 Preparation of Biological Indicators
Russ Nyberg
Growing Spore Suspensions in the Laboratory 56
Storage Conditions 60
Direct Inoculation, Use of Carrier Material 63
Self-contained BIs 65
Commercially Available vs. In-House BI Preparations 69
BI Manufacturers Responsibilities 70
References 72
About the Author 73

4 Modeling the Inactivation of Bacterial Spores
Alfredo C. Rodriguez
Introduction 75
Mathematical Models 76
Resistance of Bacterial Spores 76
Types of Models 78
Representative Curves 78
Probabilistic Modes: Quantal Models 82
Risk Evaluation 84
Mechanistic Models 85
Empirical (Curve Fitting) Models 90
References 93
About the Author 95

5 The Holcomb-Spearman-Karber Method of Analyzing Quantal Assay Microbial Destruction Data
R.G. Holcomb and Irving J. Pflug
Introduction to the Holcomb-Spearman-Karber Method 97
The Spearman-Karber Method of Analyzing Quantal Assay Microbial Destruction Data 100
Basic Assumptions in the Microbial Destruction Important in the Analysis of Quantal or Fraction-Negative Data 101
A. Establishing a Probability Model for Microbial Survival in the Quantal Region 102
Other Properties of p(t) 106
B. The Spearman-Karber Method of Computing the Mean Time Until Sterility from Experimental Data in the Quantal Range
 Calculation of Heating Time for Specified Probabilities
C. Application of the Spearman-Karber Method
 Example of the Use of the Spearman-Karber Method

References
7 Biological Indicators in the Validation of Sterilization Processes: General Overview and European Perspective 161

Klaus Haberer and Korinna Vreden

Historical Development 161
 Early Development of Sterilization Processes and their Mathematical Modeling 161
 Development of Modern Sterilization Processes 164
 Steam Sterilization 164
 Dry Heat Sterilization 165
 Gas Sterilization 166
 Radiation Sterilization 167

International Guidelines 167
 EN/ISO Standards 167
 GMP Guidelines 168
 U.S. Guidelines 168
 European Guidelines 168
 PIC/S Guidelines 169
 Pharmacopeias 170
 U.S. Pharmacopeia (USP) 170
 European Pharmacopoeia (Ph. Eur.) 170

Biological Indicators, Tools to Measure Inactivation of Microorganisms 173
 Use of Biological Indicators 173
 Survival and Kill Conditions for Biological Indicators 173
 Type and Suitability of Biological Indicators 178
 Use of Biological Indicators in Validation of Sterilization Processes 179
 Standard Sterilization Cycles and Overkill Sterilization Cycles 181

Examples for Use of Biological Indicators in Sterilization Processes 183
 Steam Sterilization of Product in Sealed Final Containers 183
Biological Indicators for Sterilization Processes

Steam Sterilization of Rubber Stoppers 184
Steam Sterilization of Mixed Loads 184
Steam Sterilization of Pre-assembled Equipment and Sterilization in Place 185
Dry Heat Sterilization 186
Gas Sterilization 187

References 188
About the Authors 193

8 Japanese Perspective on Biological Indicators 195
Noboru Kimura, Taku Someya, Yuich Yamagiwa, Mamoru Kokubo and Tsuguo Sasaki

Introduction 195
Use of BIs at Pharmaceutical Manufacturing Facilities 196
Use of BIs in Validation of Decontamination Procedures for Isolator Systems 197
Use of BIs at Medical Device Manufacturing Facilities 200
Selection of BIs by Medical Device Manufacturers 200
Assessment of Results: Viable Count 201
Procedure of Use: Product Challenge Device 201
Inoculation of Spores with Product Challenge Device 202
Issues 202
Future Perspectives 203
Use of Biological Indicators at Healthcare Facilities 203
Use of Biological Indicators at Healthcare Facilities in Japan 204
Japanese Guideline Recommendations for the Use of Biological Indicators 204
Biological Indicator Use Practices at Healthcare Facilities 205

References 208
About the Authors 210

9 Regulatory Expectations for the Use of Biological Indicators — United States Perspective 211
Jeanne Moldenhauer

Introduction 211
Biological Indicator Manufacturers 212
Moist Heat Sterilization Processes 212
Products Manufactured for the United States 213
Ethylene Oxide Sterilization Processes 214
Dry Heat Sterilization 215
10 The Use of Biological Indicators in the Development and Qualification of Moist Heat Sterilization Processes 219

Mike Sadowski

Introduction 219

Inactivation of Microorganisms with Moist Heat 221

Mechanisms of Spore Heat Resistance and Inactivation 222

The Spore Inactivation with Exposure to Moist Heat 222

Semi-Log Survivor Curve Model for Microbiological Inactivation 222

F-value 224

F_{PHY} 224

F_{BIO} 225

D_T-value 225

z-value 227

Selection of a Biological Indicator for the Development and Qualification of Moist Heat Sterilization Processes 228

Selection of Hardest to Sterilize Solution Formulation or Item/Component 232

The Master Solution Approach for Liquid Products 232

The Process Challenge Device (PCD) Approach for Porous/Hard Goods Items 235

Effect of Carrier Surface Materials on the Resistance of Biological Indicator Organisms 237

Moist Heat Sterilization Process Development 239

Development of the Sterilization Cycle Pre-Exposure Conditioning/Heat up Phase 239

Determination of Exposure Time 240

Physical Lethality Considerations 240

Biological Lethality Considerations 240

The Use of Physical Lethality and Biological Lethality in the Development of the Exposure Phase 241

Determination of the Minimum Physical Lethality Value 241

Minimum Physical Lethality Values from Regulatory Standards 242

Minimum Physical Lethality Values Required with Use of the Overkill Design Approach 242

Determination of Minimum Physical Lethality Values with Use of the Product Specific Approach 243
Determination of Exposure Time to Achieve the Required Physical Lethality
Use of Biological Lethality in the Development of the Exposure Time
Certification Program for Biological Indicators
Use of Biological Lethality in the Determination of Exposure Time for Sterilization Processes with Standardized Physical Lethality Requirements
Biological Lethality Assessments of Overkill Processes
Use of the Fractional Exposure Method in the Development of the Exposure Time
Qualification of the Moist Heat Sterilization Process
The Use of Physical Lethality in the Qualification of Moist Heat Sterilization Processes
The Use of Biological Lethality in the Qualification of Moist Heat Sterilization Processes
The Use of Biological Indicators in the Monitoring of Moist Heat Sterilization Processes
The Use of Biological Indicators in Moist Heat Sterilize-in-Place (SIP) Processes
The Future Opportunities for Biological Indicators
Acknowledgement
References
About the Author

11 Biological Validation of Radiation Sterilization Processes

Mark A. Seybold

Introduction
Background
Radiation Units
Sterilization with Gamma Rays
Sterilization with Electron Beams
Sterilization with X-rays
Materials Compatibility
Mode of Action
Inactivation of Microorganisms with Ionizing Radiation
Radiation Resistance
Factors Affecting Radiation Resistance
 Environmental Conditions that Affect Radiation Resistance
 Organism Characteristics
Inactivation Kinetics
Validation of Radiation Sterilization 283
 History 283
 Validation Using ISO 11137 284
 Dose Setting (Microbiological Validation) 284
 Method 1 285
 Method 2 286
 Method V_D^{max} 287
 Dose Mapping (Irradiator Validation) 288
 Transference of Sterilization Dose 289
 Validation Maintenance 289
 Dose Audits (Microbiological Requalification) 290
 Bioburden Determination Frequency 291
 Irradiator Revalidation 291
Conclusions 291
References 292
Acknowledgement 300
About the Author 300

12 Suitability of Biological Indicators for Vaporized Hydrogen Peroxide Decontamination 301
Volker Sigwarth

Introduction 301
H_2O_2 Decontamination 302
 Process Expectations and Limitation 310
Test System 310
Model Behavior of Biological Indicators 313
 Different Methods for D-value Determination 314
 Survivor Curve Method (SCM) 314
 Fractional Negative Methods 315
 Stumbo Murphy Cochran Method (SMCM) 315
 Limited Holcomb Spearman Karber Method (LSKM) 316
Selection of Method 316
Examples of D-value Estimation 317
Variability and Uncertainty of D-value Estimations 318
Suitable Composition of Biological Indicators 319
 Test Organism 320
 Initial Population N_0 323
 Carrier Material 331
 Primary Packaging 339
Selection of Biological Indicators 340
Commercially Available Biological Indicators 342
Contents

15 Biological Indicators for Chlorine Dioxide Decontamination and Sterilization 399
Mark A. Czarneski and Paul Lorcheim

Introduction 399
Background 400
Use 401
Effectiveness 401
Cycle Description 403
 Pre-condition 404
 Conditioning 404
 Charge 404
 Exposure 405
 Aeration 405
Cycle Development 406
 Moisture Conditioning 406
 Exposure Time/Gas Concentration 407
Examples of Chlorine Dioxide Process Development 407
Biological Indicators 408
Measurement/Quantification 409
Safety/Toxicity 410
In-Process Controls 410
References 411
About the Authors 412

16 Biological Spore Inactivation by Pressure-Assisted Thermal Processing: Challenges in Finding a Suitable Biological Indicator for Process Validation 413
Wannasawat Ratphitagsanti, Silvia De Lamo-Castellvi and V.M. Balasubramaniam

Introduction 413
Process Engineering Basics 415
 General Principles Governing Pressure-Assisted Thermal Processing 415
 Typical Pressure-assisted Thermal Processing 416
Microbial Efficacy of Pressure Treatment on Bacterial Spores 419
 Spore Biology 419
Factors Influencing Spore Inactivation 421
 Sporulation Conditions 431
 Process Conditions 431
 Influence of Food Composition 432
 Importance of pH and Water Activity on Spore Inactivation 433
Biological Indicators for Sterilization Processes

Proposed Mechanistic Approaches for Pressure Inactivation of Bacterial Spores 434
Modeling Kinetics of Spore Inactivation 436
Combining High Pressure Temperature Treatment with other Hurdles 437
Validation 438
Conclusions and Future Directions 439
References 440
About the Authors 449

Use of Rapid Microbiological Methods for Biological Indicator Testing 451
Jeanne Moldenhauer and Margarita Gómez
Introduction 451
Testing Performed Using Geobacillus Stearothermophilus Spores 453
Enumeration of Biological Indicator Control Counts 454
Systems Design to Enumerate Growth After Exposure to Sterilization Conditions 455
Innovative Technologies 457
Conclusion 459
Acknowledgement 459
References 459

Rapid Readout Biological Indicators 463
Patrick J. McCormick, James J. Kaier, Catherine J. Finocchario, and Deborah L. Shaltz
Introduction 463
Resistance Performance Testing of Biological Indicators 464
Biological Indicator Incubation Time 465
Rapid Sterilization Indicator Technology 466
3M™ Attest™ Rapid Readout Biological Indicators 466
Rapid Enzymatic Indicators 467
Chemical/Biological Indicator Test Packs 468
Biological Indicators and Rapid Microbiology Methods 468
Novel Technologies 468
Preliminary Evaluation of Rapid Sterilization Indicators 469
3M™ Attest™ Rapid Readout Biological Indicator Technology 469
Qualification of 3M™ Attest™ Rapid Readout Biological Indicators 471
Contents

Qualification of the 3M™ Attest™ Auto-reader 477
Qualification of the 3M™ Attest™ Rapid Readout Biological Indicator System 477
In-Use Testing of the 3M™ Attest™ Rapid Readout Biological Indicator System 478
Validation Testing of the 3M™ Attest™ Rapid Readout Biological Indicator System 479
Implementation of the Use of 3M™ Attest™ Rapid Readout Biological Indicators 479
Experiences in the Use of the 3M™ Attest™ Rapid Readout Biological Indicator System 483
Summary and Conclusion 483
References 484
About the Authors 487

19 Pharmaceutical Biological Indicator Laboratories and Systems Validation 489

Jeanne Moldenhauer

Introduction 489
How to Obtain Biological Indicators 490
Qualification of the Testing Laboratory 491
Validation Plan 491
Equipment Validation 491
BIER Vessels 491
Method Validation 493
Media Qualification 494
Qualification of Personnel 494
Process Validation 494
Summary 494
References 495

20 Contributing Factors to Variability in Biological Indicator Performance Data 497

Jeanne Moldenhauer

Introduction 497
Background 497
Procedure 500
Deviations in Enumeration of Control Counts 500
Deviations in D-Value 501

www.pda.org/bookstore
Biological Indicators for Sterilization Processes

Contents:

- Qualified Laboratory 501
- Qualified Personnel 504
- Equipment Comparison 504
- Media Qualification 504
- Media Supplements 506
- pH 506
- Organism Strain, Type, and Purity 506
- Procedural Reviews 506
- Shipping Conditions 508
- Recovery Methods 508
- Technical Information 508
- Summary 508
- References 509
- Acknowledgement 510

Index 511
INTRODUCTION

The purpose of a sterilization process is to inactivate microorganisms; therefore, we need to verify that the sterilization process is effective in inactivating microorganisms. Even though sterilization processes are defined and monitored using physical parameters, the delivered lethality of the process is assessed by using a microbial challenge. Microorganisms are capable of sensing all the conditions that affect lethality and therefore the results that we obtain during a microbial challenge are an integration of all of these conditions, some of which we cannot measure or might be unaware of.

A biological indicator challenge system (BI), as defined in the Parenteral Drug Association Technical Report No. 1, is a “test system containing viable organisms of a pure, specified strain providing a defined resistance to a specified sterilization process”. It is important to note that BIs are defined as a system consisting not only of the sensing element, the microorganisms, but also of the carrier material onto or into which the spores are placed and the packaging used. Although there is some discussion as to whether we calibrate or characterize the resistance of a BI, it is important to use BIs for which the resistance to the particular sterilization process is known. Typically the organisms used in BIs possess a resistance to the inactivation process which is higher and in many instances highly exceeds the resistance of common bioburden organisms.

It is important to realize that we are dealing with biological entities to demonstrate the microbial killing power of an inactivation treatment. The response of the microorganisms to the inactivation treatment will be influenced by a variety of known and unknown factors and conditions to which the microorganisms are
subjected not only during the sterilization process but also before and after the sterilization process. All these factors must be tightly controlled since they affect the performance of the BIs and hence the results obtained.

In the first chapters of the book, the basic concepts necessary to the understanding of biological indicators are presented. The chapters include the history of biological validation and general principles, the kinetics of microbial inactivation and factors affecting resistance as well as a chapter dealing specifically with bacterial endospores since, due to their high resistance to most inactivation process, they are commonly used to challenge the process. The different perspectives on the use of BIs in the developments, validation and monitoring of sterilization processes in the U.S., Europe and Japan are presented as well as the various references and standards available worldwide.

The next chapters are dedicated to a discussion of biological indicators, or biological validation, used for specific sterilization or decontamination processes. These chapters present a guidance on the selection, use and interpretation of results and highlight the importance of using biological challenges that are appropriate for the particular microbial inactivation process.

Margarita Gómez
Jeanne Moldenhauer
October 2008
Margarita Gómez is a microbiologist with M.S. and Ph.D. degrees in Food Science from the University of Minnesota. Her more than 20 year involvement with biological indicators began as a student in Dr. Pflug's laboratory at the University of Minnesota and has continued through work as a supplier of biological indicators and by providing training and consulting support in the validation of microbial-control processes. She recently joined Ocean Spray Cranberries Inc. as Quality Manager, Corporate Quality. Previously she was Manager of Technical Services at VPCI Inc., where she assisted clients on regulatory, compliance and technical issues in environmental monitoring, microbial control and risk analysis in the pharmaceutical industry.

Margarita has co-authored technical papers in the field of sterilization, among them the chapter on Principles of the Thermal Destruction of Microorganisms in Block's book on Disinfection, Sterilization and Preservation. She is a member of several technical associations and has been a lecturer for the University of Minnesota, CFPA, PDA, and ISPE organizations.

Jeanne Moldenhauer, Excellent Pharma Consulting, has more than 25 years experience in the pharmaceutical industry. She chairs the Environmental Monitoring/Microbiology Interest Group of PDA, serves on the Scientific Advisory Board of PDA, founded the Rapid Microbiology User's Group™, and is a member of ASQ and RAPS. She is the author of Steam Sterilization: A Practitioner's Guide; Laboratory Validation: A Practitioner's Guide; Environmental Monitoring: A Comprehensive Handbook; Systems Based Inspections for Pharmaceutical Manufacturers; and numerous other publications.