CONTENTS

SECTION ONE

CLEANING VALIDATION BASICS AND EXPECTATIONS

<table>
<thead>
<tr>
<th>I PROCESS VALIDATION BASICS</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Process design — understanding the product and process</td>
<td>4</td>
</tr>
<tr>
<td>Process qualification — manufacturing the validation conformance lots</td>
<td>4</td>
</tr>
<tr>
<td>Continued process verification — maintaining the validated state</td>
<td>5</td>
</tr>
<tr>
<td>The “process” of process validation</td>
<td>5</td>
</tr>
<tr>
<td>Lifecycle approach to process validation — organizational approach</td>
<td>5</td>
</tr>
<tr>
<td>Quality risk management</td>
<td>6</td>
</tr>
<tr>
<td>Terminology</td>
<td>6</td>
</tr>
<tr>
<td>Basis for the Lifecycle Approach to Process Validation</td>
<td>7</td>
</tr>
<tr>
<td>Expectations for Validated Processes</td>
<td>10</td>
</tr>
<tr>
<td>Process understanding (Pluta and Poska, 2008)</td>
<td>10</td>
</tr>
<tr>
<td>Design and development</td>
<td>11</td>
</tr>
<tr>
<td>Pilot scale, technology transfer, and commercial scale up</td>
<td>14</td>
</tr>
<tr>
<td>Identification of input variables</td>
<td>14</td>
</tr>
</tbody>
</table>
Cleaning and Cleaning Validation, Volume 1

Contents

Key Considerations for Cleaning in the Laboratory 55
Conclusions 56
About the Author 57

4 THE CLEANING VALIDATION POLICY AND THE CLEANING VALIDATION PLAN 59

Miguel Montalvo

Introduction 59
FDA Perspective 60
The Cleaning Validation Policy 61
 Develop an outline 62
 Equipment design review 63
 SOPs and operational cleaning procedure review 64
 Matrix development 65
 Worst case selection 66
 Sampling plan and limits determination approach 66
 Target residue identification 67
 Analytical methods requirements 68
 Cleaning validation documents 68
 Cleaning validation maintenance 68
The Cleaning Validation Plan 69
 Cleaning validation plan outline 70
Cleaning Validation Protocol 71
Execution of the Cleaning Tests 72
Summary Report 72
Summary and Key Points 72
References 73
About the Author 73

5 GLOBAL REGULATORY INSPECTIONS STANDARDS FOR CLEANING VALIDATION 75

Clive G. Blatchford

Introduction 75
Regulatory Inspections Preparation for an Inspection 75
 Preparation in the facility 76
 Preparation in the meeting room 78
Global Guidance Documents 82
 US FDA 82
 Canada 82
 Europe (and PIC/S) 82
ICH 83
Misconceptions 83
Defects and Failures — Where did it all go Wrong? 84
 Barr Laboratories 84

www.pda.org/bookstore
QUALITY BY DESIGN FOR CLEANING VALIDATION

Rizwan Sharnez and Martin Van Trieste

Introduction to Quality by Design
Quality by Design Approach to Process Characterization
Identifying Worst-Case Operating Conditions
Stage I
Stage II
Validation Strategy
Conclusion
References
About the Authors

SECTION TWO
GENERAL TECHNICAL PRINCIPLES — CLEANING CHEMISTRY AND ENGINEERING

CLEANING AGENTS AND CLEANING CHEMISTRY

George Verghese and Nancy Kaiser

Introduction
Factors to Consider when Selecting Cleaning Agents
Broad-spectrum cleaning effectiveness
Substrate compatibility
Stability and shelf life
Analyzeability
Disposal
Regulatory compliance
Safety
Toxicity
Foaming
Microbial control
Manufacturing quality and GMP
Cleaning Chemistry Mechanisms
Wetting
Emulsification
Cleaning and Cleaning Validation, Volume 1

Contents

Dispersion 111
Solubility 112
Chelation 112
Oxidation 112
Hydrolysis 113
Cleaning Agent Options 113
Water 113
Commodity alkalis and acids 114
Organic solvents 114
Surfactants 114
How surfactants work 115
Surfactant types 115
Anionic surfactants 115
Cationic surfactants 116
Amphoteric surfactants 116
Nonionic surfactants 116
Formulated detergents 117
Components of formulated detergents 117
Surfactants 117
Alkalis 117
Acids 118
Sequestrants/chelants 118
Dispersants/anti-redeposition agents 118
Corrosion inhibitors 118
Oxidizing agents 118
Enzymes 119
Buffers/builders 119
Preservatives 119
Advantages and disadvantages of various options 119
Summary 120
References 120
About the Authors 121

8 CLEANING ENGINEERING AND EQUIPMENT DESIGN 123
George Verghese and Paul Lopolito

Introduction 123
Cleaning Process Parameters — TACT 125
Time 125
Action 126
Concentration 126
Temperature 127
Factors Related to the Soil or Residue 127
Soil levels 128
Soil condition 128
Case study #1 128
Hold times (dirty and clean) 129
SECTION THREE
GENERAL TECHNICAL PRINCIPLES — RESIDUES

9 RESIDUES AND CLEANING CHEMISTRY
William R. Porter

Introduction
Factors Affecting Solubility
 Lipophilicity and solubility
 Ionizability and solubility
 Surfactants and solubility
Factors Affecting Chemical Stability
 Kinetics of degradation of APIs and excipients
 Reaction mechanisms and kinetics
 Effect of temperature of reaction rates
 Common degradation pathways
Cleaning and Cleaning Validation, Volume 1

Contents

Hydrolysis 164
Oxidation 167
Photolysis 169
Other degradation pathways 170
Impact of chemical degradation of cleaning residues 170
Factors Affecting Physical Stability 170
Types of phase transformations 171
Conclusions 173
References 173
About the Author 175

10 MICROBIAL AND ENDOTOXIN RESIDUES — PRODUCT CONTACT SURFACES 177

Jeanne Moldenhauer

Introduction 177
Where do the Requirements for Cleaning and Cleaning Validation Originate? 178
United States Food and Drug Administration (FDA) 21 CFR Part 211: Current GMP for Finished Pharmaceuticals 178
European Union Good Manufacturing Practices 179
International Conference on Harmonization: Good Manufacturing Practice Guide for Active Pharmaceutical Ingredients Q7 181
Other influential documents 183
Types of Cleaning Validation Studies 183
Cleaning Validation for Rooms or Areas 183
Environmental survey 184
Selection of appropriate cleaning agents 184
Developing and setting parameters for disinfection/sanitization 185
Development of cleaning procedures 189
In situ studies 190
Microbial recovery studies 190
Endotoxin removal studies 191
Product Contact Surfaces 191
Microbial issues in cleaning validation 191
The control of microbial residues 192
Reducing microbial residues 192
The concept of objectionable microorganisms 192
Setting acceptance criteria 193
Aseptic processes 194
Non-sterile processes 194
Viral and prion contamination 194
Types of product contact surfaces 194
Components 194
Glass components 195
Evaluations prior to product exposure 195
Following product exposure 195
Plastic containers 195
11 CLEANING OF NON-PRODUCT CONTACT SURFACES

Anne Marie Dixon

Background 221
Tools, Equipment and Supplies 220
Techniques and Methods 225
 Procedures — general 225
 Double bucket technique 225
 Triple bucket technique 225
 Procedures — specific 227
 Ceilings 227
 Walls and curtains 227
 Floors 228
 Furniture/fixtures 229
 Mats 229
 Waste receptacles 229
 Work stations and equipment — horizontal surfaces 229
Reporting 231
Frequency 231
The “Clean” Factory 231
 Zone 1 — critical zone 232
 Zone 2 — the cleanroom 232
 Zone 3 — personnel entrance 232
 Zone 4 — controlled environment — areas surrounding cleanrooms 232
 Zone 5 — the plant 232
 Zone 6 — the entrance 233
 Zone 7 — the exterior 233
Testing Procedures 233
Summary 234
References 234
About the Author 234

12 RESIDUE PHARMACOLOGY AND TOXICOLOGY CONSIDERATIONS

William H. Houser

Introduction 235
Residue Limits 236
 Residue limit/residue level 236
 The 1/1000 of the NTD approach 237
 The 10 ppm approach 238
 The no visible residue approach 238
 Establishing a health-based residue limit 239
 Limitations of the approach 241
Cleaning Limits 242
Other General Considerations 243
 Potent drugs 243
 Pharmacologist perspective 244
13 RESIDUE GROUPING STRATEGIES

William E. Hall

Introduction 265
Origin of Grouping Concept for Cleaning Validation 265
Strategy or Rationale 266
Fundamental Principles of Product Grouping 267
Decision Tree Approach 268
Level 1 of the decision tree (sterile vs. non-sterile) 268
Level 2 of the decision tree (dosage form) 268
Level 3 of the decision tree (products) 269
Level 4 of the decision tree (equipment) 269
Level 5 of the decision tree (cleaning procedure) 271
Cleaning procedure (definition) 272
Identification of the Worst Case(s) Representative Product in each Group 273
Step 1 in worst case determination — assemble the data 273
Step 2 — “Torture the data until it confesses” — evaluate the data and determine the worst case product(s) 274
Identification of a Worst-Case Ingredient in a Cleaning Agent Formulation 276
Case Studies
Case study 1 277
Case study 2 278
Case study 3 278
Answers top case studies 279
Case study 1 279
Case study 2 279
Case study 3 279
References 279
About the Author 279
14 A SCIENTIFIC APPROACH TO THE SELECTION OF CLEANING VALIDATION WORST-CASE SOILS FOR BIOPHARMACEUTICAL MANUFACTURING

Rod J. Azadan and Alfredo J. Canhoto

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is a Worst-Case Soil?</td>
<td>282</td>
</tr>
<tr>
<td>A Scientifically Justified Approach</td>
<td>282</td>
</tr>
<tr>
<td>Categorization of Soil Components</td>
<td>283</td>
</tr>
<tr>
<td>The Matrix Analysis Method</td>
<td>285</td>
</tr>
<tr>
<td>Information collection</td>
<td>285</td>
</tr>
<tr>
<td>Matrix design</td>
<td>285</td>
</tr>
<tr>
<td>Soil semi-quantitation</td>
<td>287</td>
</tr>
<tr>
<td>Other Considerations</td>
<td>290</td>
</tr>
<tr>
<td>Application of the matrix approach for process intermediates</td>
<td>290</td>
</tr>
<tr>
<td>Process parameter impact on soil cleanability</td>
<td>290</td>
</tr>
<tr>
<td>Historical experience</td>
<td>290</td>
</tr>
<tr>
<td>Bioburden control</td>
<td>291</td>
</tr>
<tr>
<td>Outstanding components</td>
<td>291</td>
</tr>
<tr>
<td>References</td>
<td>291</td>
</tr>
<tr>
<td>About the Authors</td>
<td>292</td>
</tr>
</tbody>
</table>

15 VISUAL CLEANLINESS

Richard Forsyth

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>293</td>
</tr>
<tr>
<td>Parameters affecting visual observations</td>
<td>294</td>
</tr>
<tr>
<td>Acceptable residue limit</td>
<td>294</td>
</tr>
<tr>
<td>Risk management</td>
<td>294</td>
</tr>
<tr>
<td>Chapter objective</td>
<td>295</td>
</tr>
<tr>
<td>Visible Residue Limit for Cleaning Validation and its Potential Application in a Pharmaceutical Research Facility</td>
<td>295</td>
</tr>
<tr>
<td>Visible residue parameters</td>
<td>295</td>
</tr>
<tr>
<td>Experimental</td>
<td>297</td>
</tr>
<tr>
<td>Results and discussion</td>
<td>298</td>
</tr>
<tr>
<td>Conclusions — visible residues in the R&D pilot plant</td>
<td>309</td>
</tr>
<tr>
<td>Application of Visible Residue Limit for Cleaning Validation in a Pharmaceutical Manufacturing Facility</td>
<td>309</td>
</tr>
<tr>
<td>Visible residue parameters</td>
<td>309</td>
</tr>
<tr>
<td>Surface material</td>
<td>310</td>
</tr>
<tr>
<td>Solvent to prepare standards</td>
<td>310</td>
</tr>
<tr>
<td>Light intensity, viewing distance, and angle</td>
<td>310</td>
</tr>
<tr>
<td>Observers</td>
<td>311</td>
</tr>
<tr>
<td>Experimental</td>
<td>311</td>
</tr>
<tr>
<td>Results and discussion</td>
<td>314</td>
</tr>
<tr>
<td>Conclusions — visible residues in a commercial scale</td>
<td>320</td>
</tr>
<tr>
<td>manufacturing facility</td>
<td>320</td>
</tr>
<tr>
<td>Ruggedness of Visible Residue Limits for Cleaning Validation</td>
<td>321</td>
</tr>
<tr>
<td>Methods and materials</td>
<td>322</td>
</tr>
</tbody>
</table>
Results and discussion 323
 Initial vs. later VRL determination 323
 API vs. excipient vs. formulation determinations 325
 Multi-site study 326
 Residue appearance 328
Conclusion 329
Risk-Management Assessment of Visible Residue Limits in Cleaning Validation 329
 Risk identification 330
Risk analysis 331
 Management of risks 332
 Pilot plant facility uses of VRL 333
 Manufacturing facility uses of VRL 335
Summary and Conclusions 336
References 337
About the Author 338

16 PERSONNEL TRAINING — VISUAL INSPECTION
 OF CLEANED EQUIPMENT 339

 Paul L. Pluta

 Introduction 339
 Audience 340
 Development of the training content 340
 Training approach 341
 Trainer expertise and competence 341
 Presentation as a training “update” 341
Training Objectives 342
 Time allotment 343
 Re-training 343
 Site training internal requirements 343
Training Lecture Topics 343
 Training session “icebreaker” 344
 Case study #1 — Training session “icebreaker” 344
 Why are we here? Why is this training needed? 346
 What are we cleaning? 347
 Why is clean equipment important 347
 Case study #2 — Regulatory cleaning audit 349
 Cleaning development, procedures, validation, and ongoing
 visual evaluation 350
 What is cleaning? Cleaning is a process 351
 Performance of cleaning 354
 Case study #3 — “Manual cleaning — do whatever it takes” 354
 What is visually clean? 357
 Case study #4 — “Clean enough” 358
 Determination of visual cleanliness 360
 What if equipment is not visually clean after cleaning? 365
 Aids to determine visually clean 366

www.pda.org/bookstore
Cleaning and Cleaning Validation, Volume 1

Contents

- Non product-contact surfaces 366
- Documentation 366
- Site-specific considerations 367
- Demonstrations and Participatory Activities 369
 - “Water-break” test 370
 - Cleaning agent residue — solution foam 371
 - Visual evaluation of wet and dry residues 371
 - Swab sampling in cleaning validation 372
 - Dried residue examples: no cleaning, partial cleaning, completed cleaning 372
 - Known dried residue concentrations on stainless steel plates 373
 - Known dried residue concentrations — evaluations at various distances 374
 - Known dried residue concentrations — evaluation at different lighting levels 374
- Aids for visual examination 375
- Key Points for Visual Evaluation of Surfaces 375
 - Review of trainee expectations and questions 376
- Training Summary 376
- Appendix 377
- References 379
- About the Author 380

SECTION FOUR

SPECIFIC RESIDUES FOR CLEANING — PART 1

17 BIOTECH RESIDUES AND CLEANING 383

Jennifer Carlson

Introduction 383

Production Processes 384
 - Recombinant protein produced through a mammalian cell line 384
 - Cell culture 385
 - Harvest 386
 - Purification 387
 - Formulation, freezing, and aseptic filling 387
 - Protein produced through bacterial fermentation 388
 - Fermentation 388
 - Initial recovery process 389
 - Purification 389
 - Formulation, freezing, and aseptic filling 390

Process Ingredients 390

Equipment 391
 - Impact of material of construction 391
 - Tanks 391
 - Design considerations 391
 - Cleaning considerations 393
 - Cleaning cycle considerations 395

www.pda.org/bookstore
Passivation cycles (or maintenance cycles) 396
Filter housings 396
Cleaning considerations 397
Process lines and chromatography skids 397
Design considerations 398
Centrifuges and homogenizers 399
Design considerations 399
Filler 400
Lyophilizer and stopper bowl 400
Small equipment 401
Residue in a Typical Manufacturing Process 402
Cell culture or fermentation fluid 402
Pluronic F-68 and antifoams 403
Medium preparations solutions 403
Cleaning Agents and Cleaning Procedures 404
CIP cleaning 404
Pre-rinse 405
Caustic wash 405
Post caustic rinse 405
Acid wash 405
Intermediate rinse or post acid rinse 406
Final rinse 406
Parts washers 406
Manual cleaning 407
Acceptance Criteria for Biological APIs 407
Residual active product 407
Cleaning agent 408
Bioburden 409
Endotoxin 409
Visual inspection 409
Case Studies 409
Case study #1 — the case of revalidation failing TOC and conductivity 409
Problem 409
Investigation 409
Results 410
Corrective actions due to investigation 410
Conclusion 411
Case study #2 — cell culture CIP failure 411
Problem 411
Investigation 411
Corrective actions due to investigation 412
Conclusion 412
References 412
About the Author 413
18 CASE STUDY — CLEANING PROCESS OPTIMIZATION FOR A MANUFACTURING PROCESS CHANGE 415

Søren Damkjaer and Pernille L. Johansen

Introduction 415
Problem 415
Physical Examination of Equipment 416
Laboratory Studies 416
Testing the Original Cleaning Process 417
Developing the New Cleaning Process 417
Test Procedure 417
Test Data 417
Cleaning Procedures 420
 Original cleaning procedure 420
 New cleaning procedure 420
Results and Conclusions 420
About the Authors 421

19 MANUAL CLEANING PROCESSES AND PROCEDURES 423

Valerie Welter

Yes ... You Can Validate Manual Cleaning Processes 423
Getting Started 424
Process Evaluation — Eliminating Unnecessary Processes 425
Required Framework 425
 Process equipment train 425
 Product contact materials of construction 426
 Cleaning procedure(s) 427
 Allowable equipment holding times 435
 Product formulations and product cleaning test methods 436
Cleaning Validation Master Plan (VMP) 437
The Validation Protocol and Report 438
Summary Report 440
Routine Monitoring and Control 440
Revalidation/Change Control 440
Audit Checklist for Manual Cleaning 441
About the Author 442

Index 443