

ENVIRONMENTAL MONITORING

A COMPREHENSIVE HANDBOOK

VOLUME 2

Jeanne Moldenhauer
Editor

CONTENTS

About the Authors	xvii
List of Abbreviations	xxv

PART 3 – ONGOING MONITORING, SURVEILLANCE AND EVALUATION

CHAPTER 1: ESTABLISHING ONGOING MONITORING, SURVEILLANCE AND EVALUATION PROGRAMS

<i>Jeanne Moldenhauer</i>	3
Introduction	3
Components of these Systems	3
Cleaning and Sanitization/Disinfection	4
Sample Site Selection	4
Sampling Frequency	6
Alert and Action Levels	6
Data Management	7
Data Collection	7
Analysis of Data	8
Approach to Data Management	8
Interpretation of Data	9
Identification/Characterization of Isolates	9
Investigations and Corrective Actions	10
Documentation Methods	10
Environmental Monitoring for Terminal Sterilization Processes	11
Environmental Monitoring for Aseptic Processes	11
Environmental Monitoring and Isolation Technology	11

Water Monitoring	12
Monitoring of Compresses Gases	12
Air Monitoring	13
Non-Viable Particulate Monitoring	13
Viable Monitoring	13
Surface Monitoring	14
Personnel Monitoring	14
Monitoring Product or Component Bioburden	14
Parametric Release and Bioburden	15
In-Process Testing	15
Environmental Monitoring During Routine Sterility Testing	16

CHAPTER 2: ESTABLISHING ALERT AND ACTION LEVELS: THE ANALYSIS OF ENVIRONMENTAL MONITORING DATA

<i>Tom Genova</i>	17
-------------------	----

Introduction	17
Contamination Process	17
Alert and Action Levels	19
Statistical Tools	20
Data Sets	21
Mean and Standard Deviation	21
Percentiles	23
Probability Charts	24
Control Charts	25
Control Charts: Individuals	26
Control Charts: c-Chart	27
Control Charts: Modified	30
Summary	32
Acknowledgements	32
References	32

CHAPTER 3: TRENDING DATA

<i>Jim Radigan</i>	33
--------------------	----

Introduction	33
What is Trending?	34
Why Do We Trend?	34
FDA's Expectations of Trending	35
How many Data Points are Required to Identify a Trend?	36
Trends Versus Normal Variability	38

Trending Environmental Data	40
Other Considerations	44
References	45
CHAPTER 4: REPORTING DATA	
<i>Jeanne Moldenhauer</i>	47
Introduction	47
Types of Reports Generated	47
Selecting a Report Format/Style	48
General Comments on Reports	50
Accuracy	50
Traceable	50
Timely	50
Well-Documented	50
Bibliography	51
CHAPTER 5: USING ENVIRONMENTAL MONITORING DATA TO SUPPORT STEAM STERILIZATION PROCESS VALIDATION	
<i>Jeanne Moldenhauer and Michael S. Korczynski</i>	53
Introduction	53
Bacterial Spores and Sterilization Cycles	53
Spore Forming Microorganisms in the Environment	54
Important Definitions and Concepts	54
Exposure Time or Dwell Time	55
Exposure or Dwell Temperature	55
Moist Heat Sterilization Resistance	55
D-Value (Decimal Reduction Time)	55
The Thermal-Death-Time or Thermal Resistance Curve	56
z-Value	57
z-Value (Temperature Coefficient)	58
F-Value (Lethal Rate)	58
Calculating FT-Values	59
Lethal Rate	59
Time-Temperature Data	60
F ₀ -Value	60
The Survivor Curve Method	62
Fraction Negative Method	63
Sterilization Process Models	63
Overkill Models	66
Combined BI/Bioburden-Based Models	68
Absolute Bioburden Models	70

Spore Bioburden	71
Heat Screening	71
Aseptic Processing Followed by Terminal Sterilization	72
Ongoing Bioburden Characterization	73
Bioburden/Biological Indicator and Bioburden Approaches	73
Type of Carrier or Suspending Media	73
The General Method of Evaluating Heat Processes	74
Thermal Resistance Curve to Lethal Rates (L)	74
Determining the F_0 -Value ($F_{121.1C}$) (Equivalent Minutes at the Reference Temperature of 121.1°C, 250°F) of a Steam Sterilization Process	76
Calculation of Process Lethality	77
Integration of Lethal Rates	78
Time at Temperature	78
Sterilization at Temperatures Other than 121°C (250°F)	78
D-Value Determination for Performance Qualification	79
Overkill Approach	79
Bioburden/Biological Indicator and Bioburden Approaches	79
Biological Indicators	79
Purpose of Bioindicators	80
Selection of Biological Indicators	81
Enumeration of Biological Indicators	82
Thermal Resistance of Biological Indicators	82
Verification of the Resistance of Commercial Indicators	83
Use of Biological Indicators in Qualification Studies	84
Substrate Selection	84
Bibliography	84

CHAPTER 6: ENVIRONMENTAL MONITORING FOR STERILIZATION PROCESS DEVELOPMENT

<i>Anne Booth</i>	87
Introduction	87
Standards and Guidance	87
Understanding the Sterilization Process	89
Sterility Assurance Levels (SAL)	90
Product Microbial Levels	93
First Step – Establish a Bioburden Testing Program	96
Second Step – Understand and Control Environmental Factors that Affect Product Bioburden	99
Third Step – Sterilization Process Development	102
Radiation	102
Ethylene Oxide	106
Case Studies	108

Importance of Understanding Bioburden	108
Affect of Environment	108
References	108
CHAPTER 7: IDENTIFICATION OF ENVIRONMENTAL ISOLATES	
<i>Klaus Haberer</i>	111
Introduction	111
Regulatory Expectance	113
United States	113
Pharmacopoeial Position	113
Position of FDA	113
Position of the European Authorities	114
Position of International Organization for Standardization (ISO)	114
Position of Parenteral Drug Association (PDA)	114
A Simplified Picture of Microbial Taxonomy	115
Groups of Microorganisms	115
Gram-Positive Cocci	116
Spore Forming Gram-Positive Rods	116
Non Spore Forming Gram-Positive Rods	117
Oxidase Positive Gram-Negative Rods (Non-Fermenters)	117
Oxidase Negative Gram-Negative Rods (Fermenters)	118
Yeasts	119
Molds	119
Significance of Identification of Environmental Isolates for Cleanroom Control	119
Purpose of Identification	119
Identification of Gram-Positive Cocci	121
Identification of Spore Forming Gram-Positive Rods	121
Identification of Non-Spore Forming Gram-Positive Rods	122
Identification of Oxidase Positive Gram-Negative Rods	122
Identification of Oxidase Negative Gram-Negative Rods	122
Identification of Yeast and Mold	123
Present Industrial Practice	123
Sampling Practice	123
Identification Practice	123
Environmental Sampling and Characterization of the Microflora	124
Use of Identification Data	125
Composition of the Microflora in Manned Cleanrooms	125
A Proposed Identification Scheme for Environmental Monitoring	128
Critical and Direct Support Zone	128
Indirect Support Zone	131
Consequence of Application of the Proposed Identification Scheme	131

A Model Cleanroom Monitoring System	131
Conventional Identification Scheme	133
Proposed Identification Scheme	134
Summary and Conclusions	135
References	135
CHAPTER 8: ENVIRONMENTAL MONITORING INVESTIGATIONS	
<i>Karen Ginsbury</i>	137
CHAPTER 9: CHANGE CONTROL AND PREVENTATIVE MAINTENANCE	
<i>Jeanne Moldenhauer</i>	153
Introduction	153
Change Control Procedures	153
Preventative Maintenance	154
Documentation of Maintenance Procedures	154
Conclusion	154
CHAPTER 10: ENVIRONMENTAL MONITORING AND CONTROL SYSTEM ASSESSMENT	
<i>Jeanne Moldenhauer</i>	155
Introduction	155
Components of an Environmental Control Program	156
What should be Included in an Environmental Assessment	157
Who should be Involved in the Assessment?	158
Achieving Sustainable Quality with the Environmental Program	158
Conclusion	158
CHAPTER 11: TYPICAL PROCEDURES REQUIRED FOR AN ENVIRONMENTAL CONTROL PROGRAM	
<i>Jeanne Moldenhauer</i>	159
Introduction	159
Microbiological Master Plan	159
Environmental Control Policy	160
Utilities (HVAC, Water, Compressed Gases)	161
Cleaning and Disinfection (of Facilities)	162
Equipment Cleaning (Production)	163
Equipment and Facility Cleaning (Laboratory)	163
Environmental Monitoring and Control	164
Conclusion	169

CHAPTER 12: WHAT IS REQUIRED FOLLOWING RE-MODELING?*Jeanne Moldenhauer*

171

Introduction	171
Establishing Requirements	171
Selection of Sample Sites	172
Qualification of the Area	172
Final Report	173

CHAPTER 13: AUTOMATING AN ENVIRONMENTAL CONTROL PROGRAM*Jeanne Moldenhauer*

175

Introduction	175
Approaches	177
System Assessment	177
Evaluate Opportunities for Automation	178
Manual Data Collection and/or Utilization of Spreadsheets	178
Laboratory Information Management Systems (LIMS)	179
Designing a Custom System	179
Off-the-Shelf Software, with some Customization Possible	180
Evaluating Vendors	180
Software Audits	181
Technical Support Available	181
Meeting of the Minds	182
Defining and Specifying Requirements	182
Software Selection	182
Installation of the Software	182
Debugging and Gaining Familiarity	183
Considerations for Validation Testing	183
Validation	184
Conclusions	184
References	184

CHAPTER 14: ENVIRONMENTAL IMPACT ON MEDIA FILLS*John Lindsay*

187

Summary	187
Course History – The Genesis	188
Course History – The Evolution	188
Facility Description	190
Materials and Methods	192
Spore Suspension	192
Facility Sanitization	192
Media Fills	193

Environmental Monitoring	193
Incubation Conditions	194
Case Studies	194
Case Study No. 1 (May 2000)	197
Case Study No. 2 (August 2000)	198
Case Study No. 3 (January 2002)	199
Case Study No. 4 (March 2001)	200
Case Study No. 5 (October 2001)	201
Case Study No. 6 (April 2002)	201
Case Study No. 7 (January 2003)	203
Case Study No. 8 (September 2002)	205
Case Study No. 9 (October 2002)	207
Case Study No. 10 (August 2003)	207
Case Study No. 11 (August 2004)	209
Case Study No. 12 (October 2004)	210
Case Study No. 13 (September 2004)	211
Case Study No. 14 (November 2004)	212
Discussion – Media Fills	212
Discussion – The Experimental Plan	213
Discussion – What the Data does not Demonstrate	214
Discussion – Recommendations	215
Conclusions	215
Acknowledgements	215

CHAPTER 15: ENVIRONMENTAL MONITORING IN NON-STERILE PRODUCT MANUFACTURING

<i>Anthony M. Cundell</i>	217
---------------------------	-----

Introduction	217
Guidance Documents	218
Risk Assessment	220
Appropriate Levels of Environmental Control	225
Microbial Sampling Methods	226
Selection of Sampling Locations and the Frequency of Sampling	226
Setting Alert and Action Levels for Air and Surface Monitoring	227
Significance of Different Microbial Isolates	228
Responses to Environmental Monitoring Excursions	229
Overall Management of an Environmental Monitoring Program	230
Conclusions	230
References	231

PART 4 - RAPID METHODS APPLIED TO ENVIRONMENTAL MONITORING**CHAPTER 16: INTRODUCTION TO RAPID MICROBIAL METHODS FOR ENVIRONMENTAL MONITORING***Jeanne Moldenhauer* **235**

Introduction	235
Resources for Rapid Microbiological Methods	236

CHAPTER 17: RAPID METHODS FOR WATER MONITORING*Jeanne Moldenhauer* **239**

Introduction	239
Considerations for Selection of a Water Monitoring Instrument	239
Systems Available for Water Monitoring - Microbiology	240
ATP Bioluminescence	241
Biosensors	241
Confocal Laser Scanning Spectroscopy	241
Conventional Methods with Amplified or Computer-Aided Imaging to Detect Micro-Colonies	241
Electrical Sensors	242
Electrochemical Based Sensors	242
Electrochemical Immunodetection	242
Flow Cytometry	242
Handheld Endotoxin Analysis	243
Infrared Spectroscopy	243
MALDI-TOF Mass Spectroscopy	243
Microarrays (DNA Chips and Biochips)	243
Microfluidic Devices (Lab on a Chip)	244
Microlensing Technologies	244
Optical Sensors	245
Polymerase Chain Reaction (PCR)	245
Solid Phase Laser Scanning Cytometry	246
Conclusion	247
Acknowledgements	247
Bibliography	247

CHAPTER 18: ENVIRONMENTAL MONITORING USING THE SCAN RDI POLYM'AIR*Jeanne Moldenhauer and Pascal Yvon* **249**

Introduction	249
What is the Scan RDI?	249

Scan RDI Technology	250
Membrane Filtration	250
Labeling	250
Laser Scanning	253
Data Reports and Validation	255
Applications for Environmental Monitoring	256
Filterable Samples	256
Air and Surface Samples	258
References	260

CHAPTER 19: RAPID ENVIRONMENTAL MONITORING USING THE GROWTH DIRECT™ TEST

<i>Don Straus et al.</i>	261
--------------------------	-----

Rapid Methods for Environmental Monitoring	261
The Growth Direct™ Test – How it Works	263
Rapid Microbial Enumeration of Air Samples	269
Rapid Microbial Enumeration of Surface Samples	272
Identifying Environmental Isolates Detected by the Growth Direct™ Test	276
Conclusions	277
Methods	278
References	279

CHAPTER 20: IDENTIFICATION SYSTEMS

<i>Jeanne Moldenhauer and Scott Sutton</i>	281
--	-----

Abstract	281
Why are Identifications Performed?	281
Environmental Monitoring	281
Raw Material/In-Process Bioburden	282
Types of Identification/Characterization Methods	283
Traditional Methods Used for Microbial Identification	283
Stains	286
Biochemical Screening	288
Differential and Selective Media	289
Rapid/Alternative Methods of Microbial Identification	289
Phenotypic Methods	289
Genotypic (Nucleic Acid Methods)	291
Considerations in Selection of an Identification System	293
Conclusion	294
Acknowledgements	294
Bibliography	294

CHAPTER 21: PALL SYSTEM*Lucia Ceresa***297**

Introduction to the Pall System	297
Pallchek™ ATP System Technology	299
Pallchek™ Luminometer	299
Pallchek™ Reagent Kits	299
Basic Testing Procedure	301
Background Control	302
Microbiological Environmental Control using ATP Rapid Technology	303
Sample Preparation and Analysis Qualification	304
Water Monitoring Application	306
Qualitative Analysis of Water Samples	306
Quantitative Analysis of Water Samples	308
Cleaning/Sanitization Control	311
Cleanroom and Isolator Monitoring Application	314
Viable Surface Monitoring	314
Viable Active Air Monitoring	319
Surface Monitoring of Controlled Areas	319
Bibliography	320

CHAPTER 22: GLOSSARY*Jeanne Moldenhauer***323**

Glossary of Terms	323
-------------------	-----

CHAPTER 23: START-UP LIMITS FOR ENVIRONMENTAL MONITORING*Jeanne Moldenhauer***327**

Introduction	327
Guidelines of Current Typical Environmental Monitoring Frequencies and Levels – Sterile Products	328
Guidelines of Current Typical Environmental Monitoring Frequencies and Levels – Non-Sterile Products	330
Guidelines of Current Typical Environmental Monitoring Frequencies and Levels – Utilities	331
Acknowledgements	333

CHAPTER 24: IMPLEMENTATION AND AUTOMATION OF THE MIMS SYSTEM

<i>George M. Levinson</i>	335
Implementation and Automation of an Environmental Monitoring Program	335
Abstract	335
Background	336
What is an Environmental Monitoring Program?	337
An Automated Environmental Monitoring System	340
Selecting a Software Program	346
The Decision to Purchase EM Software	348
Software Audits	350
Technical Support Available	350
Meeting of the Minds	351
Defining and Specifying Requirements	351
Installation of the Software	352
Debugging, Gaining Familiarity	352
Preliminary Training	352
Considerations for Validation Testing	353
Validation	353
Installation Testing	353
Operational Qualification (OQ)	354
Performance Qualification (PQ)	354
Conclusion	354
References	355

CHAPTER 25: ACQUISITION AND IMPLEMENTATION OF AN ENVIRONMENTAL MONITORING SOFTWARE PROGRAM

<i>Susan Cleary and Parsa Famili</i>	357
Introduction	357
The Current State of the Lab	357
The Lab's Future State	358
Evaluate User Requirements and Design Specifications	359
Prepare Budget	360
Select a System	362
Vendor Audit	362
Performance Measures	366
Test System	367
Managing Risk	368
Personnel Training	368
System Validation	369
Gap Analysis	371

Roll Out	371
Go Live	372
Ongoing Support	372
Initial Warranty	372
Yearly Service and Support Programs and Extended Warranty	372
Telephone Support Hot Line	372
On-site Technical Support	372
Maintenance	373
Back Up	373
Disaster Recovery	373
Archiving	373
Conclusion	374

CHAPTER 26: AUTOMATING, MANAGING AND TRACKING INVESTIGATIONS

Jeanne Moldenhauer and James Radigan **375**

Introduction	375
Components of an Investigation	376
Investigation Tracking and Monitoring	376
Identifying Tasks to be Performed	376
Tracking Investigation Status	376
Generating an Investigation Summary Report	377
Effectiveness of Corrective Actions	377
Reporting Mechanisms	378
Sample Report List	378
References	378

CHAPTER 27: COMPARATIVE MOLD AND YEAST RECOVERY ANALYSIS

Veronica Marshall, Sherie Poulson-Cook

and Jeanne Moldenhauer **387**

As published in the PDA Journal of Pharmaceutical Science and Technology, Vol. 52, No. 4/July-August 1998

CHAPTER 28: HEPA MOBILE STORAGE CARTS

Seth Pyers **393**

Introduction	393
Design	393
Validation	397
Conclusion	399

Attachment 1	399
Test Methods Checklist	399
Acceptance Criteria	400
CHAPTER 29: ENVIRONMENTAL MONITORING USING AN INSTANTANEOUS MICROBIAL DETECTOR	
<i>J. P. Jiang</i>	403
Functionality of the Instantaneous Microbial Detector (IMD)	403
Application of IMD Sensor in Air Monitoring	407
Summary	411
Acknowledgements	412
References	412
INDEX	413