Environmental Monitoring A Comprehensive Handbook

VOLUME 3

Jeanne Moldenhauer Editor

CONTENTS

About the Authors		xiii
I	ENVIRONMENTAL MONITORING	ı
	Jeanne Moldenhauer	
	Overview	I
	Components of an Environmental Control System	2
	Facility Design and Maintenance	3
	Documentation Systems and Procedural Controls	3
	Procedural Controls	3
	US Requirements	3
	European Requirements	7
	World Health Organization (WHO)	16
	Japanese Requirements	25
	Cleaning, Sanitization, and Disinfection	31
	Environmental Process Control Parameters	32
	Basic Parameters of an Environmental Monitoring Regime	32
	Environmental Monitoring System Selection	32
	Method Validation/Implementation	32
	Selection of Sample Sites	33
	Environmental Monitoring Sampling Frequency	33
	Alert and Action Levels	34
	Analytical Method Variability	35
	Risk Assessment	35
	Data Management	35

General Methods for Assessing the State of Environmental Control	
Interpretation of Environmental Data	
Characterization (Identification) of Isolates Recovered	50
Deviation Reports/Investigations/Corrective Actions	50
Typical Surveillance Programs	
Water Monitoring	51
Compressed Gas Monitoring	51
Air Monitoring	53
Nonviable Monitoring	55
Maintenance of a Surveillance Monitoring Program	58
Special Concerns for Monitoring During Routine Sterility Testing	77
References	

2	ASEPSIS AND THE FOUNDATIONS OF INFECTION CONTROL	81
	James Akers	
	Healthcare Facility Monitoring Today	82
	Hospital Infection Control and Industrial Aseptic Processing —	
	Divergent Approaches to a Contamination Assessment	82
	Environmental Monitoring as an Indicator of Sterility Assurance	83
	Sterility Assurance — A Four-Legged Stool	84
	Proving a Negative Absolute	85
	The Process Simulation Leg	85
	The Environmenal Monitoring Log	86
	Alert and Action Levels	86
	Process Control and Aseptic Processing	87
	Risk Analysis and EM	88
	Monitoring at the Crossroads	89
	Continuous Viable Monitoring — The Holy Grail?	91
	The Real Fork in the Road	92
	Trend Analysis	95
	Beyond the Crossroads — Advanced Aseptic Technologies	95
	Conclusion	96
	References	98

3 AVOIDING VIABLE MICROBIAL CONTAMINATION EVENTS — ILLUSTRATIVE CASE STUDIES 101

Ken Muhvich	
Introduction	101
Background	101
Case Studies — Failures to React to Environmental Monitoring Excursions	104
Case Study #1 — Batch Sterility Failure	104
Case Study #2 — Batch Sterility Failure	105
Case Study #3 — Critical Surface Sample Excursion	105
Case Study #4 — False–Positive Sterility Tests	106

Contents

Case Study #5 — Batch Sterility Failure	106
Case Study #6 — Sterility Test Failure	107
Case Study #7 — Environmental Monitoring Excursions	108
Case Study #8 — Environmental Monitoring Excursions	108
Case Study #9 — Bulk Solution Bioburden Excursion	109
Case Study #10 — Over Action Environmental Data Excursion	110
Analysis of EM Results — Important Questions to Answer	111
References	112

4	GLOBAL APPROACH TO ENVIRONMENTAL MONITORING	113
	Joseph J. Lasich	
	Background	113
	The Global Challenge	114
	Response to Question I	114
	Response to Question 2	114
	Response to Question 3	114
	Response to Question 4	115
	Corporate Management Role	115
	Nature of Aseptic Processing	116
	Design and Prevention Approach/Process Understanding	117
	Plant Level Environmental Monitoring Metrics	117
	Establish Performance Expectations Across all the Plants — Current Best	
	Practice Expectations	117
	Selection of Metrics	118
	Media Fill Failures	119
	Media Fill Three-Year Failure History	119
	Media Fill Positive Units	119
	Media Fill Three-Year Positive Unit History	120
	Media Formulation Simulation Failures	120
	Media Formulation Simulation Three-Year Failure History	120
	, Product Sterility Test Failures	120
	Product Sterility Test Three-Year Failure History	121
	Percent Microbial Growth (Air and Surfaces)	121
	Grade A Fill Zones for Each Fill Line	121
	Grade A or B Surrounding Grade A Fill Zone in Fill Room	121
	Grade B Ancillary Areas	121
	Personnel Garments	121
	Personnel Gloves	121
	Mold Growth	122
	Grade A Fill Zones for Each Fill Line	122
	Grade A or B Surrounding Grade A Fill Zone in Fill Room	122
	Grade B Ancillary Areas	122
	Number of Grade A and B Action Level Excursions	122
	Air	122
	Surfaces	122
	Personnel	122

v

Limitations of this Risk-Based Assessment Method	
Global Aseptic Processing Risk Assessment	123
Qualitative Factors in Aseptic Processing	
Communication with Manufacturing Facilities	
Best Practices: Examples of Case Studies	
Personnel Gowning Practices	130
Use of Periodic Sporicide Disinfectant Solution	130
Formation of Aseptic Processing Improvement Teams	131
Microbiology Lab Response to Alert and Action Level Excursions	131
Physical Observation and Auditing of Aseptic Operational Practices	
Use of Remote Visual Monitoring in Clean Rooms	132
Facility and HVAC Design Improvements	132
Manufacturing Process Design Improvements	132
Multi-Year Quality Indicators	132
Use of Airflow Modeling	133
Conclusion	
References	134

5	TRENDING IN THE EM PROGRAM	135
	Scott Sutton	
	What is the Point of Environmental Monitoring?	135
	Guidance	136
	FDA Guidance — 2004 cGMP Guide	136
	USP Guidance — Chapter <1116>	139
	EU Annex I	140
	ISO 14644	140
	ISO 13408-1	140
	Trade Organizations — PDA Technical Report 13	141
	The Role of Microbial Identification	142
	Quality Control of Microbial Identification	142
	Types of Identification Technology Available	142
	The Importance of the Identification Database	143
	Basic Questions on EM Trending	144
	What are we Trending?	144
	What Studies are these Data Supporting?	145
	Considerations in Trending EM Data — The URS	147
	Creation of a URS for a Database Program	147
	After the URS	150
	Trending Tools Available	150
	Spreadsheets	151
	Summary	152
	References	152

Г	1ONITORING OF SURFACES
	Gilberto Dalmaso, Manuela Bini, Roberto Paroni, Michela Ferrari
Ir	ntroduction
C	Overview of Micro-Rheologics Flocked Swabs Technology
Ρ	art l
	Comparison Between New Flocked Swabs and Traditional Rayon™ Swabs Recovery and Release Capacity from Known Micro-Organisms Inocula (Spiked Samples)
	Results And Discussion
	Release Capacity
Ρ	art II
	Recovery Capacity Comparison Between New Flocked Swabs and Traditional Rayon™ Swabs/Contact Plates from Environmental
	Surfaces Sampling of Pharmaceutical Areas
_	Results and Discussion
S	ummary and Conclusion
R	eferences
S	CankDi
S S V C R	cannol canRDI-Chemswab Surface Monitoring Application alidation Data Conclusion eferences
	ScanRDI-Chemswab Surface Monitoring Application /alidation Data Conclusion References MICROBIAL RECOVERY FROM SURFACES USING CONTACT
S S V C F F	CanRDI-Chemswab Surface Monitoring Application Alidation Data Conclusion References MICROBIAL RECOVERY FROM SURFACES USING CONTACT PLATES AND SWABS Dawn Melver
	canRDI-Chemswab Surface Monitoring Application falidation Data Conclusion Geferences MICROBIAL RECOVERY FROM SURFACES USING CONTACT PLATES AND SWABS Dawn McIver Data
SSVCR P Irp	canRDI-Chemswab Surface Monitoring Application falidation Data Conclusion Leferences MICROBIAL RECOVERY FROM SURFACES USING CONTACT PLATES AND SWABS Dawn McIver htroduction
SSVCR PP IrPN	canRDI-Chemswab Surface Monitoring Application alidation Data conclusion eferences IICROBIAL RECOVERY FROM SURFACES USING CONTACT LATES AND SWABS Dawn McIver htroduction urpose laterials and Methods
	canRDI-Chemswab Surface Monitoring Application falidation Data Conclusion Leferences MICROBIAL RECOVERY FROM SURFACES USING CONTACT PLATES AND SWABS Dawn McIver Introduction urpose faterials and Methods rocedure
	canRDI-Chemswab Surface Monitoring Application (alidation Data Conclusion Geferences MICROBIAL RECOVERY FROM SURFACES USING CONTACT PLATES AND SWABS Dawn McIver Introduction Purpose Materials and Methods Procedure Gesults
	canRDI-Chemswab Surface Monitoring Application (alidation Data Conclusion Geferences MICROBIAL RECOVERY FROM SURFACES USING CONTACT PLATES AND SWABS Dawn McIver Introduction Purpose Materials and Methods Procedure Gesults Discussion
	icanRDI icanRDI-Chemswab Surface Monitoring Application /alidation Data Conclusion References /ICROBIAL RECOVERY FROM SURFACES USING CONTACT /LATES AND SWABS Dawn McIver ntroduction /urpose faterials and Methods /rocedure lesults Discussion Wet Inoculum
	icanRDI icanRDI-Chemswab Surface Monitoring Application /alidation Data Conclusion References MICROBIAL RECOVERY FROM SURFACES USING CONTACT PLATES AND SWABS Dawn McIver ntroduction Purpose Aaterials and Methods Procedure lesults Discussion Wet Inoculum Dried Inoculum
SSIVE IFIERD C	ScanKDI ScanRDI-Chemswab Surface Monitoring Application /alidation Data Conclusion References MICROBIAL RECOVERY FROM SURFACES USING CONTACT PLATES AND SWABS Dawn McIver ntroduction Purpose flaterials and Methods Procedure Results Discussion Wet Inoculum Dried Inoculum

9 MICROBIAL DETECTION, IDENTIFICATION AND ENUMERATION BASED ON RAMAN SPECTROSCOPY 183

T.J. Ronningen and A.P. Bartko	
Introduction	183
Microbial Identification Technology	183
What is Raman Spectroscopy?	185
Spectral Response from Microbial Systems	187
Identification of Single Cells	189
Raman Spectral Variability	190
Raman Spectral Impact of Viability Stains	193
Automated Enumeration and Identification	193
Application of the Microbial Identification Technoloty to	
Pharmaceutical Manufacturing	194
Conclusion	196
References	196

A RAPID NON-DESTRUCTIVE AUTOMATED COMPENDIAL	
METHOD FOR ENVIRONMENTAL MONITORING	199
Andrew Sage and Don Straus	
Workflow of the Growth Direct System is the same as used in Standard	
Environmental Monitoring Methods	205
Time Savings	205
Environmental Monitoring Using the Growth Direct System	207
Rapid Environmental Surface Testing	207
Equivalent Capture Efficiency of Traditional and Membrane-	
Covered Contact Plates	208
Rapid Environmental Air Testing	209
Rapid Microbial Enumeration of Environmental Water Samples	211
Conclusion	211
References	212

II ACTIVE MICROBIAL AIR SAMPLING WITH

CORIOLIS®~µ AIR SAMPLER AND ScanRDI®	
Philippe Gadal and Quitterie Desjonqueres	
ScanRDI	214
ScanRDI-Coriolis µ New Generation Air Monitoring Application	216
Validation Data	216
Conclusion	218
References	218

12	HYGIENE SCREENING SYSTEM, A REAL-TIME PCR METHOD FOR THE RAPID IDENTIFICATION OF MAJOR MICROORGANISMS IN ENVIRONMENTAL MONITORING Anna Söderholm-Labre and Kornelia Berghof-Jäger
	Background
	How Does a PCR System Work?
	Real-Time PCR
	Description of the Hygiene Screening System
	A Ring Trial, Testing the Reproducibility and Precision of the
	System in Comparison to Conventional Methods
	An Industrial Standard for Validation of the Hygiene Screening System
	Installation, Operation and Performance Qualification
	Accuracy
	Precision
	Robustness
	Conclusion
	References

13	PHARMACEUTICAL MICROBIOLOGY LABORATORIES	5
	Ierry Tiernagel	235
	Introduction to Proficiency and Competency	235
	Definition of Terms	236
	Practice on a Limited Basis	236
	Definite Trend	237
	Test Methods and Samples	237
	Elements of Analyst Competency Assessment	238
	Analyst Qualifications	238
	Analyst Training	238
	Quality Control	239
	Sample Suitability	239
	Performing the Test Method	239
	Interpreting the Test Results	240
	Remedial Action	240
	Permanent Records	240
	Competency Assessment Samples	240
	Replicate Samples	241
	Preserved Sample	241
	Spiked Sample	241
	Reference Standard Sample	241
	Reference Stock Cultures	241
	Assayed Microorganism Preparations	242
	Subscription Programs	242
	Conducting an Analyst Competency Assessment	242
	Analyst Competency	243
	Frequency	243

Responsibility	243
Observations	243
Inquiries	243
Recorded Compentency Results	243
Summary	243
References	244
Appendix I: Proficiency and Competency Survey Form	244
Appendix II: Analyst Competency Assessment Checklist	245

14	BEST PRACTICES IN ENVIRONMENTAL MONITORING
	AUTOMATION
	Robert Toal, Michael Goetter, Susan Harrison, Jeremy Tanner,

Timothy A. Coleman, Robert Lutskus

Introduction	247
Current State of Environmental Monitoring	248
Concepts for Automation	249
Automation Challenges for EM in Aseptic Processing Environments	250
Introduction of Mobile Technology to Overcome Automation Challenges	250
Best Practices Requirements for Automated EM and Quality Control	250
Paper-Based Process for Viable Sample Collection	254
Paperless Process for Viable Sample Collection	254
Paper-Based Process for Non-Viable Air Testing	255
Paperless Process for Non-Viable Air Testing	256
Visualization of Test Results	257
Return on Investment: Time = Money	258
Conclusions	258
Lonza Case Study	258
Case Study at ImClone Systems	265
Product Demand Drives Growth	265
Business Impact	265
Implementation	266
Tangible Business Benefits	266
References	267

15	EVALUATION OF THE BIOVIGILANT® IMD-A™, A NOVEL	
	OPTICAL SPECTROSCOPY TECHNOLOGY FOR THE	
	CONTINUOUS AND REAL-TIME ENVIRONMENTAL	
	MONITORING OF VIABLE AND NONVIABLE PARTICLES	269
	Michael J. Miller	
	Opportunities for Using a Rapid Microbiological Method	
	for Environmental Monitoring	272
	Materials	273
	Methods	275
	Data Analysis for Comparative Studies	277

www.pda.org/bookstore

247

Contents

Evaluation of Three Instruments Under Laboratory Conditions	277
Results And Discussion	
Comparative Studies	278
Evaluation of Three Instruments Under Laboratory Conditions	
Summary	284
References	

INDEX

289

www.pda.org/bookstore

xi