

Technical Report No. 15
Revised 2009
Validation of Tangential
Flow Filtration in
Biopharmaceutical
Applications

2009

Validation of Tangential Flow Filtration in Biopharmaceutical Applications Task Force

Chris Antoniou, Millipore Corporation (presently at Biogen Idec)

Neil Bingham, Amgen

Glen Bolton, Wyeth

Christopher Bussineau, BioVascular, Inc.

Michael Dosmar, Sartorius Stedim Biotech

Chithkala Harinarayan, Genentech, Inc.

Robert Juffras, Stryker Biologics

James Klein, Merck

Peter Levy, Altus Pharmaceuticals (presently at PL Consulting)

Richard V. Levy, PDA

Mike Mulcare, Biogen Idec

Jon Petrone, Pall Corporation

Jon Romero, Biogen Idec

Ganesh Vedantham, Amgen

Robert Velcheck, Amgen

The content and views expressed in this technical report are the result of a consensus achieved by the authoring task force and are not necessarily views of the organizations they represent.

Validation of Tangential Flow Filtration in Biopharmaceutical Applications

Technical Report No. 15 (Revised 2009)

ISBN: 978-0-939459-25-4

© 2009 Parenteral Drug Association, Inc.
All rights reserved.

www.pda.org/bookstore

Table of Contents

1.0 INTRODUCTION	2	6.0 PROCESS VALIDATION	30
1.1 Purpose	2	6.1 Relationship to Process Design and Characterization.....	30
1.2 Scope	3	6.2 Development of Protocol Acceptance Criteria	31
2.0 GLOSSARY OF TERMS	4		
3.0 TANGENTIAL FLOW FILTRATION IN BIOPROCESSING	8	7.0 CLEANING VALIDATION	33
3.1 TFF Process Operations	10	7.1 Cleaning Challenges	33
3.1.1 Concentration	10	7.2 Cleaning and Sanitization Practices	33
3.1.2 Diafiltration	10	7.3 Cleaning Validation Practices.....	35
3.1.3 Clarification / Particulate Removal	11		
3.1.4 Fractionation of Soluble Species.....	11		
3.1.5 Perfusion.....	11		
3.2 Modes of TFF Operations	12	8.0 MEMBRANE REUSE	36
3.2.1 Single Pass	12		
3.2.2 Batch and Fed-Batch Processing	13	9.0 POST-VALIDATION ACTIVITIES	38
3.2.3 Feed and Bleed	13	9.1 Process Monitoring	38
3.3 TFF Modules and Configurations	14	9.2 Revalidation.....	39
3.3.1 Cassettes and Plate-and-Frame	14	9.2.1 Equipment Change.....	39
3.3.2 Hollow Fiber Cartridges	15	9.2.2 Filter Membrane and Module Change.....	39
3.3.3 Spiral Cartridges	16	9.2.3 Operational Parameter Change	40
3.4 Types of TFF Process Controls.....	17	9.2.4 Process-Scale Change.....	40
4.0 EQUIPMENT QUALIFICATION	18	10.0 INTEGRITY TESTING	41
4.1 Prerequisites to Equipment Qualification	18	10.1 Types of Integrity Tests and Their Application.....	41
4.2 Overall TFF Unit Operation Considerations ...	18	10.2 Guidelines to Interpret Results	42
4.3 Design Considerations	19	10.2.1 Application of Integrity Tests to Large Systems	42
4.4 Installation Qualification	19	10.3 Normalized Water Permeability Test	43
4.5 Operation Qualification	19	10.3.1 Variables That May Affect NWP Testing.....	43
4.6 Performance Qualification.....	20	10.3.2 How To Interpret NWP Data	44
5.0 PROCESS DEVELOPMENT	21	10.3.3 Setting NWP Acceptance Criteria	44
5.1 Membrane Compatibility	21		
5.2 Product Retention and Process Flux	22		
5.2.1 Cell Clarification.....	22	11.0 EXTRACTABLES AND LEACHABLES	45
5.2.2 Concentration and Diafiltration by Ultrafiltration.....	23	11.1 Materials of Construction Considerations	45
5.3 Equipment Design and Operation Considerations.....	23	11.2 Process Considerations	46
5.4 Tangential Flow Filtration Process Characterization.....	24	11.3 Cleaning Considerations	46
5.4.1 Microfiltration	24	11.4 Flushing Procedures.....	46
5.4.2 Ultrafiltration/Diafiltration	27	11.5 Experimental Methods	47
5.4.3 Impurity Clearance	29		
5.5 Development and Requirements for Scale-Down Models	29	12.0 REFERENCES	48

1.0 Introduction

Technical Report No. 15: Industrial Perspective on Validation of Tangential Flow Filtration in Biopharmaceutical Applications, initially published in 1992, was developed to provide guidance on the validation of tangential flow filtration (TFF) process steps in biopharmaceutical manufacturing. (1) In the last 15 years, substantial change has occurred in industry—processing equipment has improved, new technology and materials have been introduced, a larger number of products have undergone validation, and, of course, substantial new guidance on validation has been published. (2)

1.1 Purpose

Technical Report No. 15 (Revised 2009): Validation of Tangential Flow Filtration in Biopharmaceutical Applications aims to advance the ideas and information presented in the 1992 original version of TR-15 and bring them up-to-date. Nearly every purification scheme today employs tangential flow filtration and chromatography. The latter subject has also been updated in *PDA Technical Report No. 14 (Revised 2008), Validation of Column-Based Chromatography Processes for the Purification of Proteins*. (3)

The basic tenet of validation has not changed. Its purpose is still to demonstrate with a high degree of confidence that a process performs consistently. However, current practices in tangential flow filter validation now emphasize a continuing cycle of updating process knowledge after the initial validation is complete and stresses a more rigorous scientific approach using risk assessment tools.

This Technical Report will include a detailed discussion of the activities associated with all steps needed to successfully complete validation of tangential flow filtration unit operations for protein purification. Discussions will include tangential flow filtration principles, process development and laboratory studies with scale-down models, manufacturing-scale validation batches, and finally, post-validation tasks, such as process monitoring. This technical report is intended to provide concise guidance and rationale to the scientist or technician with little or no protein purification validation experience; it is not intended to be a step-by-step guide to performing validation.

1.2 Scope

Technical Report No. 15 (Revised 2009), Validation of Tangential Flow Filtration in Biopharmaceutical Applications focuses on validation of tangential flow filtration processes used to manufacture therapeutic proteins and polypeptides produced from recombinant or non-recombinant expression systems that can be characterized with appropriate analytical methods. Some principles may also apply to other product types, such as proteins and polypeptides isolated from tissues and body fluids. However, these products may not be as well characterized as recombinant DNA-derived biopharmaceuticals and monoclonal antibodies. Details surrounding their process validation may differ and are beyond the scope of this document.

This technical report provides a comprehensive overview of strategies that may be used to validate a manufacturing process or unit operation, and it outlines the validation life cycle, including the development and characterization of the tangential flow filtration process, the design of the process equipment, validation of the equipment and process, and post-validation maintenance of the “validated state” through change control, process monitoring and revalidation. The document also contains a concise review of the fundamental principles of tangential flow filtration. A basic understanding of those principles is needed to develop a meaningful validation program.

This technical report does not cover validation as it relates to reprocessing, reworking, aseptic processing of drug products, Process Analytical Technologies (PAT), facilities, design qualification, stability or shipping. References are provided to direct the reader to current sources of information on these topics.

Revised TR-15 is intended to complement *PDA Technical Report No. 42, Process Validation of Protein Manufacturing* by providing more detailed guidance on validation of the tangential flow filtration aspect of the protein purification process. (2) Similar to TR-42, it does not intend to establish or imply mandatory standards. Use of TFF for virus removal applications is no longer commonly practiced, therefore this is out of scope for this technical report.