

Technical Report No. 47
Preparation of Virus
Spikes Used for Virus
Clearance Studies

2010

Preparation of Virus Spikes Used for Virus Clearance Studies Task Force

Authors

Damon Asher, PhD, Millipore Corp.

Kurt Brorson, PhD, U.S. Food and Drug Administration

JoAnn Hotta, Talecris Biotherapeutics

Joseph Hughes, PhD, WuXi AppTec, Inc.

Jerold Martin, Pall Life Sciences

Horst Ruppach, NewLab BioQuality GmbH

Gail Sofer, SofeWare Associates

Martin Wisher, PhD, BioReliance, Inc.

Hannelore Willkommen, PhD, RBS-Consulting

Bin Yang, PhD, Genentech, Inc.

Contributors

Mark Bailey, Eli Lilly and Company

Kate Bergman, Lancaster Labs.

Johannes Blümel, PhD, Paul-Ehrlich Institut

Jeri Anne Boose, Compliance Insight, Inc.

Mark Cabatingan, Hoffmann- La Roche Inc.

Dayue Chen, PhD, Eli Lilly and Company

Qi Chen, PhD, Genentech, Inc.

Michael Colman, Millipore Corp.

Michelle Davis, Talecris Biotherapeutics

Frank van Engelenburg, Kinesis Pharma

Charles Felice, Centocor Ortho Biotech (Johnson and Johnson)

Ren-yo Forng, PhD, MedImmune, Inc.

Albrecht Gröner, CSL Behring GmbH

Mohammed Haque, Pall Life Sciences

Arifa Khan, PhD, U.S. Food and Drug Administration

Richard Levy, PhD, PDA

Scott Lute, U.S. Food and Drug Administration

Carol Marcus-Sekura, BASI

Michael Morgan, Asashi Kasei, Planova Division

Masahiro Oda, Pall Life Sciences

Leonard Pease, PhD, University of Utah

Kathy Remington, PhD, Catalent Pharma Solutions, Inc

Barry Rosenblatt, Charles River Labs.

Michael Ruffing, PhD, Boehringer Ingelheim

Fokke Terpstra, Sanquin NL

Ruth Wolff, Biologics Consulting Group

The content and views expressed in this Technical Report are the result of a consensus achieved by the Task Force and are not necessarily views of the organizations they represent or regulatory authorities in the E.U. or the U.S. Government.

Preparation of Virus Spikes Used for Virus Clearance Studies

Technical Report No. 47

ISBN: 978-0-939459-27-8
© 2010 Parenteral Drug Association, Inc.
All rights reserved.

Table of Contents

1.0 INTRODUCTION	4
2.0 GLOSSARY OF TERMS	6
3.0 PREPARATION OF VIRUS STOCKS	10
3.1 Introduction	10
3.2 Sourcing of Viruses and Preparation of Virus	10
3.2.1 Viruses Used for Viral Clearance Studies	10
3.3 Sourcing and Traceability of Viruses	12
3.3.1 Traceability of Viruses	12
3.4 Preparation of Virus Seed	13
3.4.1 Approaches for Preparation	13
3.4.2 Virus Seed Preparation	14
3.5 Preparation of Master and Working Virus Banks	14
3.5.1 Preparation of the Master Virus Bank (MVB)	15
3.5.2 Preparation of the Working Virus Bank (WVB)	16
3.6 Preparation of Virus Used for Virus Clearance Studies	16
3.6.1 Cytopathic Viruses	16
3.6.2 Non-cytopathic Viruses	17
3.7 Storage of Virus Stocks	17
3.8 Purification of Viruses	18
3.8.1 Purification by Ultracentrifugation	18
3.8.1.1 Pelleting	18
3.8.1.2 Cushions	18
3.8.1.3 Gradient Ultracentrifugation	19
3.8.2 Purification by Membrane Adsorber	19
3.8.2.1 Purification of Parvoviruses on a Q Membrane Adsorber	19
3.9 Methods Used to Reduce Aggregates	20
3.9.1 Filtration	20
3.9.2 Filtration at the Spiking Step	21
3.9.3 Sonication	22
4.0 METHODS FOR CHARACTERIZATION	23
4.1 Identity Testing	23
4.1.1 Sequencing	23
4.1.2 Immunological Assays	23
4.2 Functional Properties	24
4.2.1 Infectivity Assays	24
4.2.1.1 Data Analyses and Validation of Methods for Virus Enumeration	24
4.2.2 Total Particle Count	24
4.2.2.1 Electron Microscopic Determinations	24
4.2.2.2 Quantitative PCR	25
4.2.2.3 Spectrophotometric Measurement	25
4.2.2.4 Infectivity to Particle Ratio	25
4.2.3 Aggregation	26
4.2.3.1 Dynamic Light Scattering (DLS)	26
4.2.3.2 Filter Sizing	26
4.2.3.3 Newer Methods	26
4.3 Purity	26
4.3.1 Protein Content	26
4.3.2 DNA/RNA Content	27
4.4 Contamination	28
4.4.1 Sterility/Bioburden	28
4.4.2 Mycoplasma	28
4.4.3 Adventitious Viruses	29
4.4.3.1 <i>In vitro</i> assays	29
4.4.3.2 Immunoassays	29
5.0 IMPACT OF VIRUS SPIKE ON THE SCALED DOWN MODEL AND ON VIRUS REMOVAL AND INACTIVATION	30
5.1 Introduction	30
5.2 Influence of the Virus Spike on the Scaled Down Model	30
5.2.1 Chromatography	30
5.2.2 Filtration	31
5.2.2.1 Filtration Case Study #1	31
5.2.2.2 Filtration Case Study #2	32
5.2.2.3 Filtration Case Study #3	33
5.2.2.4 Filtration Case Study #4	34
5.3 Influence of the Virus Spike on the Log ₁₀ Reduction Value (LRV)	35
5.3.1 Chromatography	36
5.3.2 Filtration	36
5.3.2.1 Filtration Case Study #5	37
5.3.2.2 Filtration Case Study #6	37
5.3.2.3 Filtration Case Study #7	39
5.3.2.4 Filtration Case Study #8	40
5.4 Influence of Virus Spike on Inactivation	43
5.4.1 Inactivation Case Study #1 (Pasteurization)	43
5.4.2 Inactivation Case Study #2 (Extreme pH)	44
5.4.3 Inactivation Case Study #3 (Low pH)	44
6.0 PHAGE PREPARATIONS FOR SPIKING STUDIES	46
6.1 Typical Use of Phages in Spiking Studies	46
6.2 Potential Phage Models	46
6.2.1 PR772	46

6.2.2 Φ 6.....	47	7.3.2 Cultivation and Storage of Cells.....	53
6.2.3 Φ X-174.....	47	7.3.2.1 Medium Components	53
6.2.4 PP7.....	47	7.3.2.2 Serum.....	54
6.2.5 MS2.....	48	7.3.2.3 Trypsin.....	55
7.0 CONTROL OF CELLS USED FOR VIRUS PROPAGATION AND TITRATION.....	51	7.3.3 Cryopreservation and Storage	55
7.1 Introduction.....	51	7.4 Cell Bank Testing	55
7.2 Origin, Source, and History of Cells	51	7.5 Cell Line Characterization	56
7.3 Preparation of Cells and Cell Banking	52	7.6 Raw Material Sourcing and Preparation	58
7.3.1 Preparation of Master Cell Bank (MCB) and Working Cell Bank (WCB).....	52	7.7 Documentation.....	59
8.0 REFERENCES.....	61		

FIGURES AND TABLES INDEX

Table 3.2.1	Mammalian Viruses Used in Virus Validation Studies.....	11	Figure 5.3.2.2-2	LRV Of PPV Using PPV Preparations of Different Purity	39
Figure 3.5	Master and Working Virus Bank Preparation Flowchart.....	15	Figure 5.3.2.3	Reduced LRV Observed with Flow Decay in a Small Virus Retentive Filter Caused by High Molecular Weight DNA	40
Table 3.7	Stability of SV40 and MMV Stored at -80°C.....	18	Figure 5.3.2.4-1	Purification of X-MuLV and MMV by Sucrose Gradient Centrifugation	41
Figure 3.8.2.1	Chromatograph of PPV Purified on a Q Membrane Adsorber	20	Figure 5.3.2.4-2	SV40 Stock Purification and Analysis	41
Table 3.8.2.1	Purification of PPV on a Q Membrane Adsorber.....	20	Table 5.3.2.4	SV40 Clearance by a Large Retentive Virus Filter	42
Table 3.9.2	Reduction of Virus Titer after Spiking and Pre-Filtration Through 0.2 and 0.1 μ m Rated Filters	21	Table 5.3.2.5	Effect of pH and Spike Quality on Observed LRV of PPV with a Large Virus Filter	42
Figure 4.1.2	Porcine parvovirus Infected Cultures of ST Cells; Uninfected Cells	23	Table 5.3.2.6	Removal of Virus Aggregates by Filtration.....	43
Table 4.3.1	Protein Concentration of MMV Purified by Various Means.....	27	Figure 5.4.1	Inactivation of Different HAV Preparations by Pasteurization in Albumin.....	44
Table 5.2.1	Product Yield from Four Scaled-Down Unit Operations Using Different Spike Ratios.....	31	Figure 5.4.2	Inactivation of Different HAV Preparations by Extreme pH.....	44
Figure 5.2.2.1	HAV Retention by a Small Size Virus Retentive Filter Using Different Spike Ratios.....	32	Figure 5.4.5	Inactivation of Different BVDV Preparations by Low pH	45
Figure 5.2.2.2	Capacity of a Virus Filter in Relation to the Purity of the Virus Spike.....	33	Table 6.2	Summary of the Properties of Selected Bacteriophages	47
Figure 5.2.2.3	Flow Decay in a Small Virus Filter Caused by High Molecular Weight Mammalian DNA	34	Figure 6.3	Procedure for Growth and Purification of Bacteriophages	50
Figure 5.2.2.4	Effect Of Spike Purity on Throughput of Various Small Virus Filters.....	35	Figure 7.3.1	Morphology of Vero Cells in Different Growth Stages.....	53
Figure 5.3.1	Influence of Spike Purity on LRV by a Small Virus Retentive Filter	36	Figure 7.5-1	Examples Demonstrating the Susceptibility of Two Cell Lines to Various Viruses	57
Figure 5.3.2.1	Small Virus Filter LRV Observed with Purified and Crude MMV Preparations.....	37	Figure 7.5-2	Virus Growth Characteristic (HAV, Strain HM175, in FRHK-4 Cells)	58
Figure 5.3.2.2-1	Filtration Volume Of Spiked IgG Using Different PPV Preparations ...	38	Table 7.7	Documentation for Cell Banks and the Use of Cells	60

1.0 Introduction

Assuring the viral safety of plasma derived biologicals and biopharmaceuticals is critical for safe use by healthcare consumers and successful marketing by industry of these vitally important healthcare products. Incidences of contamination of products derived from human plasma in the past have adversely impacted the health of hundreds of patients and tainted the image of certain segments of the healthcare industry. Today's recombinant biopharmaceuticals have never, as far as we know, presented a similar viral safety issue, and plasma derived products have a better safety record today. This is in large part due to stringent measures taken by the industry and regulators to mitigate viral safety risks.

The current strategy for ensuring viral safety involves multiple levels of control over the product and process, including cell bank screening, source material screening and/or inactivation, and incorporation of specific virus removal or inactivation steps into the production scheme. Validating the ability of the process to remove or inactivate viruses is key in understanding the ability of the manufacturing scheme to clear viruses, in the unlikely event that they do contaminate a process intermediate, and in providing a yard-stick to determine if the clearance capacity is large enough to assure viral safety.

Viral clearance studies start by designing scale-down models of the actual manufacturing unit operations. The objective of the scale-down model is to determine the performance and viral clearance that can be expected of a unit operation at full scale. First, key and critical process parameters, as defined in PDA Technical Report No. 42 (1) or ICH Q8(R2) (2) (e.g., resin contact time, filtration volume per membrane surface), are matched between the scale-down models and commercial large scale processing. Second, key and critical performance parameters, such as step yield and purity, must be representative of the large scale unit operation. Non-key/non-critical operating parameters, like column bed diameter and filter area, are lowered to allow reduction of the model unit operation to a scale practical for lab studies. Other key and critical parameters have to be considered if precipitation steps are investigated and virus is removed by distribution into the precipitate.

Viral clearance studies are conducted by spiking virus into the relevant intermediate and processing the spiked material in a scaled down unit operation. The reduction in the virus load by the unit operation demonstrates the effectiveness of the process step for virus removal or inactivation. The virus spike used in viral clearance studies should be representative of a potential contaminant to the extent achievable. Not only is the selection of appropriate relevant or model viruses important; the properties of the virus spike must also be considered. For example, the presence of serum in a virus spike may be problematic for a validation study of a serum-free manufacturing scheme. As another example, the presence of non-viral extraneous macromolecules, such as proteins and DNA, would be problematic for a validation of a downstream unit operation where the process fluid is presumably a highly purified, non-aggregated protein. It is important that contaminants in the virus spike itself do not impact key or critical performance parameters in a way that makes the scale-down model unrepresentative of the large scale process.

Achievement of these goals involves careful selection and design of virus spikes, both in terms of volume of spiking and purity of the preparations themselves. While it is relatively straightforward to modify the spiking volume to the point where it is non-interfering, achievement of spike purity is more complicated. Presently, some relatively crude spikes are produced directly from unprocessed clarified cell culture lysates or culture supernatants for direct use in validation studies. These spikes, like most biological systems, are relatively heterogeneous and difficult to control. Other virus preparations that are purified by ultracentrifugation/re-suspension, chromatography or other methods possess higher purity, but are still heterogeneous to some degree. The heterogeneities and

residual impurities associated with all virus preparations should be considered when designing and interpreting viral clearance validation studies.

The spike preparation procedures and quality attributes will inevitably vary between viruses; some are relatively easy to grow and prepare, while others are difficult. Viral clearance studies for multiple biopharmaceuticals and plasma derived biologicals are performed at multiple sites and multiple contractors and variations between laboratories are also inevitable. Minimizing this variation is desirable in order to maximize confidence of end-users and regulatory authorities in the current viral safety regime. The goal of the PDA's Virus Spike Preparation Task Force is to identify useful quality attributes for virus spikes and to identify the opportunities for spike quality optimization. This technical report will report on the generally-accepted criteria for spike selection for different biopharmaceuticals at different process steps, as well as provide some technical details of virus purification and characterization.

This technical report considers also the preparation of bacteriophages. Current regulatory expectations preclude replacement of mammalian viruses with phage for final process validation studies. Under specific conditions, bacteriophages can be useful tools to reduce costs and time. Examples are process optimization, development, and definition of acceptable operating range exercises, particularly for filtration steps.

Case studies presented in this technical report were drawn from members of the task force. In most instances, the case studies are summaries of oral presentations at three PDA Viral Safety meetings (Bethesda MD, 2001; Langen Germany, 2003; Bethesda MD, 2005), but the data was not published in written form. Others were provided by task force members directly for this technical report and are based on their firm's experience and data. Finally, surveys of interested parties were conducted by the task force in 2005 and 2007 to determine current practices and desired states for virus spike preparations; summarized results are reported here for the first time. Thus, this technical report is the first comprehensive written compilation of industry experience with the impact of virus production lot purity and other properties on clearance studies.

In summary, the scope of this technical report is the definition of quality attributes that may be applied to virus and bacteriophage spike preparations as well as to cell lines used for virus propagation and sample testing. It provides neither a standard for production of virus spike preparations nor standards for quality attributes for particular viruses, but rather guiding principles that can be used to select and define appropriate quality attributes for the virus in question, with an emphasis on minimizing the impact of the virus spike on the scale-down model of the unit operation under validation and the virus clearance observed.