Technical Report No. 49
Points to Consider for
Biotechnology Cleaning
Validation

PDA
Parenteral Drug Association

2010
Points to Consider for Biotechnology Cleaning Validation Task Force

Task Force Authors
Rose Bicksler, Johnson & Johnson, Inc.
Jenna Carlson, Genentech, Inc.
Esmaeil Ektefaie, Baxter AG
Michael Guyader, Lonza Group Ltd.
Norbert Hentschel, Boehringer Ingelheim Pharmaceuticals
Destin A. LeBlanc, Cleaning Validation Technologies, Co-Chair
Peter F. Levy, PL Consulting
Anurag S. Rathore, Indian Institute of Technology, Co-Chair
Destry Sillivan, U.S. Food and Drug Administration
Bruce Stevens, Biogen Idec, Inc.

Task Force Contributors
Leah Frautschy, Genentech, Inc.
John M. Hyde, JM Hyde Consulting, Inc.
Nitin Rathore, PhD, Amgen Inc.

Other Contributors
Bo Chi, PhD, U.S. Food and Drug Administration
Bill Jones, Human Genome Sciences, Inc.
Rob Lynch, Human Genome Sciences, Inc.
Anna E. Sayani, Bristol-Myers Squibb Company
Richard Taylor, Bayer Healthcare
George Verghese, STERIS Corporation

The content and views expressed in this Technical Report represent the work of the Task Force volunteers and are not necessarily the views of the organizations they represent.
1.0 INTRODUCTION .. 3
 1.1 Purpose/Scope ... 3

2.0 GLOSSARY OF TERMS .. 5

3.0 CLEANING PROCESS DESIGN AND DEVELOPMENT 6
 3.1 Introduction .. 6
 3.2 Cleaning Process Controls (Inputs) and Measurements (Outputs) 6
 3.2.1 Cleaning Cycle Design 6
 3.2.2 Physical-Chemical Aspects 7
 3.3 Measurements Used to Determine Cleaning Effectiveness 8
 3.4 Equipment and Plant Design Considerations 8
 3.4.1 Piping .. 8
 3.4.2 Automated vs. Manual Systems 9
 3.4.3 Centralized CIP vs. Discrete Cleaning of Isolated Equipment 9
 3.4.4 Clean Out of Place (COP) 9
 3.5 Soil Evaluation and Categorization 9
 3.5.1 Soil Categories 9
 3.5.2 Soil Removal 10
 3.5.3 Cleaning Comparability Based on Soil and Surface 11
 3.5.4 Soil Selection for Laboratory Evaluations 12
 3.6 Performing Cleaning Development Experiments 12
 3.6.1 Parameter Selection 13
 3.6.2 Parameter Interactions 13
 3.7 Cleaning Process Scale-Up 13
 3.7.1 Setting Process Controls 14
 3.7.2 Introduction of New Soils to a Validated Cleaning System 14
 3.8 Applying the “Design Space” Concept to Cleaning Processes 15

4.0 ACCEPTANCE LIMITS .. 17
 4.1 Key Issues in Limits for Actives 17
 4.1.1 Establishing Limits for Actives in Formulation and Final Fill 18
 4.1.2 Establishing Limits for Actives in Bulk Manufacture 18
 4.1.3 Limits Based on Toxicity Data 19
 4.2 Limits for Cleaning Agents 20
 4.2.1 Limits for Commodity Chemicals 20
 4.2.2 Limits for Formulated Cleaning Agents 20
 4.3 Bioburden Limits .. 21
 4.4 Endotoxin Limits .. 21
 4.5 Visual Clean Criterion 21
 4.6 Modifying Limits .. 22

5.0 SAMPLING METHODS .. 23
 5.1 Sampling Method Selection 23
 5.1.1 Direct Sampling Methods 23
 5.1.2 Rinse Sampling 23
 5.1.3 Swab Sampling .. 24
 5.1.4 Comparison of Swab and Rinse Sampling 25
 5.2 Placebo Sampling .. 26
 5.3 Sampling for Microbial and Endotoxin Analysis 26
 5.4 Sampling Recovery Studies 26
 5.4.1 General Considerations 26
 5.4.2 Swab Recovery 27
 5.4.3 Rinse Recovery 27
 5.4.4 “Recovery” in Visual Inspection 28
 5.4.5 Recovery for Bioburden and Endotoxin Sampling 28
 5.5 Training and Qualification of Samplers 29
 5.5.1 Key Issues for Training for Swab Sampling 29
 5.5.2 Key Issues for Training for Rinse Sampling 30
 5.5.3 Training for Visual Inspection 30

6.0 ANALYTICAL METHODS 31
 6.1 Specific Analytical Methods 31
 6.2 Impact of Inactivation/Degradation of the Active 31
 6.3 Nonspecific Analytical Methods 32
 6.3.1 Total Organic Carbon (TOC) 32
 6.3.2 Total Protein ... 33
 6.3.3 Conductivity .. 33
 6.3.4 Visual Inspection 34
 6.4 Microbial Test Methods 35
 6.4.1 Endotoxin .. 35
 6.4.2 Bioburden ... 35
 6.5 Analytical Method Validation 35
 6.5.1 General Principles 36
 6.5.2 Compendia Methods 37
 6.5.3 Visual Inspection 37
 6.5.4 Bioburden Methods 37
 6.5.5 Use of a Contract Laboratory 37

7.0 CLEANING VALIDATION PROTOCOLS 39
 7.1 Cleaning Verification Protocols 39
1.0 Introduction

Cleaning validation plays an important role in reducing the possibility of product contamination from biopharmaceutical manufacturing equipment. It demonstrates that the cleaning process adequately and consistently removes product residues, process residues and environmental contaminants from the cleaned equipment/system, so that this equipment/system can be safely used for the manufacture of defined subsequent products (which may be the same or a different product). As used in this Technical Report, “product” may be a drug product, bulk active, intermediate, or another type of formulation. If “drug product” is intended, that terminology will be utilized. While cleaning validation for biotechnology manufacturing has many of the same elements as for other pharmaceutical manufacturing, there are enough differences such that a separate Technical Report focusing on biotechnology cleaning validation is appropriate.

Previous PDA documents on cleaning validation, including the 1998 PDA Technical Report No. 29, Points to Consider for Cleaning Validation and the 1996 monograph Cleaning and Cleaning Validation: A Biotechnology Perspective provide valuable insights for biotechnology manufacturers. However, this report presents more updated information that is aligned with life cycle approaches to validation and the International Conference on Harmonisation (ICH) guidelines Q8(R2), Pharmaceutical Development, Q9, Quality Risk Management, and ICH Q10, Pharmaceutical Quality System. This report also aims to present information in a way that readers can easily utilize to assist in creating a cleaning validation program for their equipment and facilities.

The Biotechnology Cleaning Validation Task Force was composed of European and North American professionals from biotechnology manufacturers, cleaning chemical suppliers, regulatory agencies and consulting companies. This report also underwent a global, technical peer review to ensure concepts, terminology, and practices presented are reflective of sound science and can be used globally.

Note: For ease of use, this Technical Report includes a list of acronyms used throughout the document. Refer to Section 16.0.

1.1 Purpose/Scope

The focus of this Technical Report is on biotechnology manufacturing. Biotechnology manufacturing includes bacterial and cell culture fermentation. While some might exclude plasma fractionation and egg-based vaccine manufacturing from the strict definition of biotechnology, many of the practices and guidance in this report are applicable to plasma fractionation and egg-based vaccine manufacturing. Therefore, examples given will be for biotechnology manufacturing. We have also included a life cycle cleaning validation approach, including design/development of the cleaning process, process qualification (the protocols runs), and ongoing validation maintenance. These practices and the associated guidance in this Technical Report are based on technical considerations and should be applicable in all regulatory environments.

The intent of this Technical Report is not to provide a detailed plan or detailed road map for a biotechnology manufacturer to perform cleaning validation. Rather, as the title suggests, it presents “points to consider” as one designs a cleaning validation program for biotechnology manufacturing based on an understanding of one’s manufacturing and cleaning processes. In cleaning validation, there are generally multiple ways to accomplish the same goal of a compliant, scientifically sound and practical cleaning validation program. Where options are given, the rationales for such options are also generally given. The Biotechnology Cleaning Validation Task Force that developed this document hopes that it will be used in that spirit. Based on an understanding of the unique nature of any individual situation, different approaches or additional issues should also be considered.
This report should be considered a resource to help guide the development or evaluation of a cleaning validation program. It is not intended to establish mandatory standards for cleaning validation. It is intended to be a single-source overview for biotechnology manufacturers that complements existing guidance and reference documents, listed in Section 13.0. The reader should also be aware that a specific topic may be discussed in several sections of this Technical Report. Therefore, a more complete perspective may be obtained by considering all relevant sections about a certain topic.