Technical Report No. 54-4

Implementation of Quality Risk Management for Pharmaceutical and Biotechnology Manufacturing Operations

Annex 3: Case Studies in the Manufacturing of Biotechnological Bulk Drug Substances
Implementation of Quality Risk Management for Pharmaceutical and Biotechnology Manufacturing Operations

Annex 3: Case Studies in the Manufacturing of Biotechnological Bulk Drug Substances

Authors

Ruhi Ahmed, Chair, Ph.D., RAC, Ultragenyx Pharmaceutical Inc.
Derek Blaettler, Genentech
Ursula Busse, Ph.D., Novartis
Eric Dolinski, Biogen Idec

Thomas Genova, Ph.D., Johnson & Johnson
Frank Hallinan, University College Cork
Scott Rudge, Ph.D., RMC Pharmaceutical Solutions Inc.
Raman Srinivasan, Biocon
Abdul Wajid, Ph.D., XOMA

Contributors

Patrick Swann, Ph.D., Biogen Idec
Anurag Rathore, Ph.D., Biotech CMZ

Disclaimer: This technical report annex was developed as part of PDA’s Paradigm Change in Manufacturing Operations (PCMO®) project. The content and views expressed in this technical report are the result of a consensus achieved by the Task Force and are not necessarily views of the organizations they represent.
Implementation of Quality Risk Management for Pharmaceutical and Biotechnology Manufacturing Operations

Annex 3: Case Studies in the Manufacturing of Biotechnological Bulk Drug Substances

Technical Report No. 54-4

© 2014 Parenteral Drug Association, Inc.
All rights reserved.
Paradigm Change in Manufacturing Operations (PCMO®)

PDA launched the project activities related to the PCMO program in December 2008 to help implement the scientific application of the ICH Q8, Q9 and Q10 series. The PDA Board of Directors approved this program in cooperation with the Regulatory Affairs and Quality Advisory Board, and the Biotechnology Advisory Board and Science Advisory Board of PDA.

Although there are a number of acceptable pathways to address this concept, the PCMO program follows and covers the drug product lifecycle, employing the strategic theme of process robustness within the framework of the manufacturing operations. This project focuses on Pharmaceutical Quality Systems as an enabler of Quality Risk Management and Knowledge Management.

Using the Parenteral Drug Association’s (PDA) membership expertise, the goal of the Paradigm Change in Manufacturing Operations Project is to drive the establishment of ‘best practice’ documents and/or training events in order to assist pharmaceutical manufacturers of Investigational Medicinal Products (IMPs) and commercial products in implementing the ICH guidelines on Pharmaceutical Development (ICH Q8, Q11), Quality Risk Management (ICH Q9) and Pharmaceutical Quality Systems (ICH Q10).

The PCMO program facilitates communication among the experts from industry, university and regulators as well as experts from the respective ICH Expert Working Groups and Implementation Working Group. PCMO task force members also contribute to PDA conferences and workshops on the subject.

PCMO follows the product lifecycle concept and has the following strategic intent:
• Enable an innovative environment for continual improvement of products and systems
• Integrate science and technology into manufacturing practice
• Enhance manufacturing process robustness, risk based decision making and knowledge management
• Foster communication among industry and regulatory authorities

For more information, including the PCMO Dossier, and to get involved, go to www.pda.org/pcmo
# Table of Contents

## 1.0 INTRODUCTION .................................................. 1  
  1.1 Purpose and Scope .................................................. 1  

## 2.0 GLOSSARY OF TERMS ........................................... 3  

## 3.0 APPLICATION OF QUALITY RISK MANAGEMENT IN BIOPHARMACEUTICAL MANUFACTURING PROCESSES ........................................ 5  
  3.1 Raw Materials Supply and Excipients ................................. 5  
    3.1.1 Associated Risks .................................................. 5  
    3.1.2 Suppliers .......................................................... 5  
    3.1.3 Critical Raw Materials .............................................. 5  
    3.1.4 Identification and Lot-to-Lot Consistency ..... 5  
    3.1.5 Storage .......................................................... 6  
    3.1.6 Excipients ........................................................ 6  
    3.1.7 Raw Material Inventory Management ............................ 6  
    3.1.8 Summary ......................................................... 8  
    3.1.9 Case Study: Raw Materials Associated with Cell-Culture Media ........................................ 8  
      3.1.9.1 Risk Assessment ............................................... 8  
      3.1.9.2 Risk Control .................................................. 10  
      3.1.9.3 Risk Review .................................................. 10  
      3.1.9.4 Risk Communication ......................................... 10  
  3.2 Cell Banking ......................................................... 10  
    3.2.1 Process Description ............................................... 11  
    3.2.2 Associated Risks .................................................. 12  
      3.2.2.1 Presence of Infective Agents, Mycoplasma, Virus, Transmissible Spongiform Encephalopathy, and Bovine Spongiform Encephalopathy ... 12  
      3.2.2.2 Facilities and Equipment .................................... 13  
      3.2.2.3 Personnel ....................................................... 13  
      3.2.2.4 Process ........................................................ 13  
      3.2.2.5 Testing/Characterization and Documentation of Cell Banks ........................................ 13  
    3.2.3 Summary .......................................................... 13  
    3.2.4 Case Study - Process Failure During Cell Banking .................... 13  
      3.2.4.1 Risk Assessment ............................................... 14  
      3.2.4.2 Risk Control .................................................. 14  
      3.2.4.3 Risk Review .................................................. 17  
      3.2.4.4 Risk Communication ........................................... 17  
  3.3 Fermentation/Cell Culture ........................................... 17  
    3.3.1 Process Description ............................................... 17  
      3.3.1.1 Seed Culture Expansion in Disposable Shake Flasks ........................................ 18  
      3.3.1.2 Seed Culture Expansion in Bioreactors (Disposable and Fixed Stirred Tank Bioreactors) ........................................ 18  
    3.3.2 Associated Risks .................................................. 19  
      3.3.2.1 CQAs .......................................................... 19  
      3.3.2.2 WCB and MCB .................................................. 19  
      3.3.2.3 Seed Culture Expansion (Shake Flask/Intermediate Bioreactor) .......................... 20  
      3.3.2.4 Production Bioreactor ......................................... 20  
      3.3.2.5 Clarification of Harvest ....................................... 20  
    3.3.3 Summary .......................................................... 21  
    3.3.4 Case Study - Bioreactor Operation ............................... 21  
      3.3.4.1 Risk Assessment ............................................... 21  
      3.3.4.2 Risk Control .................................................. 23  
      3.3.4.3 Risk Review .................................................. 24  
      3.3.4.4 Risk Communication ........................................... 25  
    3.3.5 Downstream Processes ............................................. 25  
      3.3.5.1 Process Description ........................................... 25  
      3.3.5.2 Associated Risks ............................................... 26  
      3.3.5.3 Centrifugation .................................................. 26  
      3.3.5.4 COAs, Operating Parameters, and In-Process Controls for Viral Inactivation .... 33  
    3.3.6 Summary .......................................................... 43  
    3.3.7 Case Study - Capture Chromatography FMEA for a Protein Therapeutic ......................... 43  

## 4.0 ADDITIONAL APPLICATIONS OF QRM IN BIOPHARMACEUTICAL MANUFACTURING PROCESSES ........................................ 47  
  4.1 Primary Contact Surfaces ........................................... 47  
    4.1.1 System Components and Process Description ....................... 47  
    4.1.2 Associated Risks .................................................. 49  
    4.1.3 Case Study: Primary Contact Surfaces ............................ 51  
      4.1.3.2 Risk Control .................................................. 53  
      4.1.3.3 Risk Review .................................................. 53  
      4.1.3.4 Risk Communication ........................................... 54  
    4.2 Extractables/Leachables ............................................. 54  
      4.2.1 Process Description ............................................... 55  
      4.2.2 Associated Risks .................................................. 57  
      4.2.3 Case Study: Extractables and Leachables .......................... 59  
      4.2.3.1 Risk Assessment ............................................... 59  
    4.3 Environmental Controls ............................................. 60  
      4.3.1 Process Description ............................................... 60  
      4.3.1.1 Facility Design .................................................. 61  
      4.3.1.2 Process Flows .................................................. 61  
      4.3.1.3 Facility Access .................................................. 61  
      4.3.1.4 Personnel Hygiene ............................................ 61  

4.3.1.5 Cleaning, Sanitization, and Decontamination ........................................... 61
4.3.1.6 Pest Control ............................................................... 62
4.3.1.7 Environmental Monitoring ........................................... 62
4.3.2 Associated Risks .............................................................. 62
4.3.3 Case Study: Environmental Monitoring .......................................... 62
4.3.3.1 Risk Assessment ....................................................... 63
4.3.3.2 Risk Control .............................................................. 65
4.3.3.3 Risk Review ............................................................... 66
4.3.3.4 Risk Communication ................................................... 69
5.0 CONCLUSION ......................................................................................... 70
6.0 REFERENCES .......................................................................................... 71

FIGURES AND TABLES INDEX

Table 3.1.7-1 Risk Factors for Raw Materials and Excipients ........................................... 7
Table 3.1.9.1-1 Criteria for Severity Categories ....................................................... 8
Table 3.1.9.1-2 Criteria for Detection Categories ....................................................... 9
Table 3.1.9.1-3 Criteria for Occurrence Categories ................................................... 9
Table 3.1.9.1-4 Rankings Assigned to Different Ranges of RRR Values .......................... 9
Table 3.1.9.1-5 Results of Raw Material Risk Assessment ........................................... 10
Table 3.2.2-1 Characterization Tests Typically Recommended for MCBs and WCBs12
Table 3.2.4.1-1 Criteria for Classifying Risk Components ........................................... 14
Table 3.2.4.1-2 Example of RRR Calculation ......................................................... 14
Table 3.2.4.2-1 Relative Risk Rankings for Causes of Process Failure in a Cell Banking Process ................................................................. 15
Table 3.2.4.2-2 Filtering and Risk Control for Causes of Process Failure in Cell Banking Process ................................................................. 16
Figure 3.3.1-1 Steps in Mammalian Cell-Culture and Bacterial Fermentation Process .......... 18
Table 3.3.2.1-1 CQAs Typically Impacted by Cell-Culture Conditions ........................... 19
Table 3.3.2.5-1 Classification of Upstream Unit Operations and Their Risk Assessment ................................................................. 20
Table 3.3.4-1 Risk Assessment Tool for Ranking Risk ............................................... 21
Table 3.3.4.1-1 QRM Study of Production Bioreactor for the Production of BDS ................ 22
Table 3.3.4.2-1 Partial Experimental Design for Cell-Culture Process ............................ 24
Figure 3.3.4.2-1 Effect of High DO Level and Agitation Speed on CQA Acidic Variants ........ 24
Table 3.4.1-1 Example of a Process Risk Map for Downstream Operations ..................... 26
Table 3.4.2.2-1 Disk-Stack Centrifuge Operating Parameters and Associated Failure Modes ................................................................. 28
Table 3.4.2.2.1-1 Operating Parameters and Associated Failure Modes for Microfiltration ...... 31
Table 3.4.2.3.1-1 Operating Parameters and Associated Failure Modes for Low-pH Viral Inactivation ................................................................. 33
Figure 3.4.2.4-1 Effect of Equilibration/Wash Buffer Conductivity and Load pH on HCP Removal ................................................................. 35
Table 3.4.2.4.1-1 Operating Parameters and Failure Modes for Chromatography Columns . 36
Table 3.4.2.5.1-1 Operating Parameters and Failure Modes for Ultrafiltration .................... 39
Table 3.4.2.6.1-1 Operating Parameters for VF ........................................... 41
Table 3.4.2.8-1  Scale-Up Parameters for Purification Processes ........................................... 42
Table 3.4.4.1-1  FMEA Risk Category Definitions and Scoring Scales ................................. 44
Table 3.4.4.1-2  FMEA of Operational (Input) Parameters for Capture Chromatography Step .... 44
Figure 3.4.4.1-1  Pareto Chart of RPN Scores for Capture Chromatography Step ............... 45
Table 3.4.4.1-3  Summary of DoE Results for Capture Chromatography Step ..................... 46
Figure 4.1.1-1  System Components ........................................ 48
Table 4.1.1-1  Properties of System Components ........................................... 48
Table 4.1.1-2  MOCs of Typical Primary Contact Surfaces ........................................... 49
Table 4.1.2-1  Examples of Primary Contact Surfaces Risks to Product Quality and Related Hazards ............................................. 50
Figure 4.1.2-1  QRM Road Map for Primary Contact Surfaces ....................................... 51
Table 4.1.3.1-1  Initial RPN Assessment for a Primary Packaging Process .......................... 52
Table 4.1.3.1-2  Initial Zone Classification of RPNs ........................................... 52
Table 4.1.3.2-1  Initial and Revised RPN Assessments ............................................ 53
Figure 4.1.3.3-1  Revised Zone Classification of RPN ......................................... 54
Figure 4.2.1-1  Relationship between Extractables and Leachables .................................... 56
Table 4.2.3-1  API X Process Disposables ........................................... 59
Table 4.2.3.1-1  API X Process In-House Culture and Stability Studies ............................... 60
Figure 4.3.3-1  Overview of the PHA Process .................................................................. 63
Table 4.3.3.1-1  Risk Levels Based on RPN .................................................. 65
Table 4.3.3.3-1  Environmental Monitoring Frequency Based on Criticality and Risk Priority Level .................................................. 66
Table 4.3.3.3-2  Criticality Based on Hazard Severity Ranks ........................................... 66
Table 4.3.3.3-3  PHA to Establish Risk-Based Environmental Monitoring Frequency ........... 68
1.0 Introduction

Biopharmaceutical manufacturing processes are highly complex. These processes make controlling risks throughout the product lifecycle challenging. When regulators and industry make decisions about the development and routine performance of such manufacturing processes, a key objective is the delivery of products with consistent yield and quality over time. This objective is recognized in ICH Guideline Q9, Quality Risk Management (QRM), which states (1):

*The manufacturing and use of a drug (medicinal) product, including its components, necessarily entail some degree of risk. The risk to its quality is just one component of the overall risk. It is important to understand that product quality should be maintained throughout the product life cycle such that the attributes that are important to the quality of the drug (medicinal) product remain consistent with those used in the clinical studies.*

Therefore, identification and control of risks is essential to achieve such consistency and to ensure product quality and patient safety.

QRM commences during product design and development of the manufacturing process. During this stage, QRM helps companies identify the process parameters and attributes that affect their product’s quality, leading to a more thorough understanding of the manufacturing process and ensuring product quality.

QRM should extend from incoming raw materials and excipients through the distribution chain and, ultimately, to the patient. QRM can begin with the identification of the quality target product profile (QTPP) which is a summary of product characteristics that will ensure its quality, safety, and efficacy, and an analysis of user requirements. Applicable variables (e.g., raw materials or process parameters) can be explored through quality by design (QbD) developmental studies to elaborate the variables’ effects and the interactions among them (2). In addition, QRM is an iterative process in which each step is driven by significant advances in knowledge that lead to more effective risk control.

It is important to distinguish QRM from QbD, as these two concepts are often confused with one another. QRM is an iterative process of evaluation and mitigation, whereas QbD is a stand-alone process applied at the beginning of an activity, such as, designing a product, developing a process, or building a facility. Like QRM, QbD can be iterative and uses critical quality attributes (CQAs) and other concepts to assess process capability. However, unlike QRM, QbD is often implemented during a “process characterization” phase, i.e., when the process has theoretically already been designed. In this context, QbD principles of exploring the design space through planned experiments to assess process capability are different from QRM, which is used to design the process so that it has certain attributes. Therefore, QbD is often employed in settings where the results of the experiments become a form of risk mitigation (through enhanced process knowledge) and the results become an important part of QRM.

Finally, QRM should become a living part of the product lifecycle. QRM documents should be maintained and updated as new knowledge is gained about the product and process. These documents should be used to improve processes and implement actions designed to minimize the occurrence of future problems.

1.1 Purpose and Scope

This document is one of the final annex to PDA Technical Report No. 54: Implementation of Quality Risk Management for Pharmaceutical and Biotechnology Manufacturing Operations (3). In Technical Report No. 54 (TR No.54), the authors provide detailed guidance on the methodology, application and implementation of QRM throughout the product lifecycle. In particular, TR No.54 addresses QRM application during commercial manufacturing and the integration of QRM into a pharmaceutical quality management system. The annexes to TR No. 54 consist of case studies that illustrate the various applications of QRM.
The goal of this Technical Report is to provide detailed examples of characteristic operations and case studies that demonstrate the value of implementing QRM to effectively manage risks during pre-commercial manufacturing operations. Each section of this technical report begins with an overview of a stage of the biopharmaceutical manufacturing process and the typical risks associated with that stage, followed by a case study demonstrating how to apply a QRM tool to control, mitigate, and/or eliminate risks during that stage of production. This report also includes a section on the application of QRM to additional factors that can affect biopharmaceutical manufacturing, such as primary contact surface for drug substance, extractables/leachables in the process stream, and environmental controls.

QRM applications that are related to manufacturing/contract manufacturing, supply chain, labeling/packaging, shipping, technology transfers and post-approval changes are out of scope for this annex.

Since every product and process is unique, it is not possible to provide case studies and examples that fit every aspect of biotechnological manufacturing. Furthermore, although there are many risk management tools available, the choice of a QRM tool used by the authors is guided by many factors, such as, type of risk, phase in the manufacturing process, company culture, or experience with methodology, resources available, etc. (1). The examples in this technical report are not all-inclusive (or exclusive) and are not meant to replace or redefine regulatory guidance and expectations. They are for illustrative purposes only and are not to be used as regulatory standards.