Authors

Ghada Haddad, MBA, Merck & Co./Merck Sharp & Dohme, (Chair)
Harold S. Baseman, Valsource, LLC
David Calvaresi, Valsource, LLC
Liza Lamb, Wright Medical Technology
Lori Richter, Genentech Inc/Valsource, LLC
Christopher J. Smalley, PhD, Merck & Company
William Stelzenmuller, Johnson & Johnson
Kelly Waldron, Sanofi and Dublin Institute of Technology
Steve Wisniewski, Commissioning Agents Incorporated

Disclaimer: This technical report was developed as part of PDA's Paradigm Change in Manufacturing Operations (PCMO®) project. The content and views expressed in this Technical Report are the result of a consensus achieved by the authorizing Technical Report Team and are not necessarily views of the organizations they represent.
Quality Risk Management for the Design, Qualification, and Operation of Manufacturing Systems

Technical Report No. 54-5

ISBN: 978-0-939459-96-4
© 2017 Parenteral Drug Association, Inc.
All rights reserved.
Table of Contents

1.0 INTRODUCTION .. 1
 1.1 Purpose .. 1
 1.2 Scope .. 1
 1.3 Overview .. 1

2.0 GLOSSARY AND ABBREVIATIONS 2
 2.1 Acronyms ... 5

3.0 QUALITY RISK MANAGEMENT BEST PRACTICES 6
 3.1 Developing the Risk Question 6
 3.2 Cross-functional Risk Management 7
 3.3 Considerations for Effective and Efficient Risk Assessment ... 8
 3.4 Considerations for Effective and Efficient Risk Control ... 9
 3.5 Considerations for Effective and Efficient Risk Review .. 10
 3.6 Considerations for Effective and Efficient Risk Communication 11

4.0 QUALITY RISK MANAGEMENT APPLICATIONS FOR STRATEGIC PLANNING AND PROJECT INITIATION .. 13
 4.1 Project Charter 14
 4.2 Project Execution Plan 14
 4.3 Quality Risk Management Plan 15

5.0 DEFINING REQUIREMENTS 16
 5.1 User Requirement Specification 16

6.0 MANUFACTURING SYSTEM DESIGN 17
 6.1 Manufacturing System Characterization 17
 6.1.1 System Characterization by Process Risk Assessment ... 17
 6.1.2 System Characterization by System Risk Assessment ... 21
 6.1.3 Choosing an Approach to Characterize the System ... 23
 6.2 Design Risk Assessment 24
 6.3 Requirements Traceability Matrix 25
 6.3.1 Requirements Section 26
 6.3.2 Design Qualification Section 26
 6.3.3 Commissioning and Qualification Section .. 26
 6.4 Design Review in the Quality Risk Management Lifecycle ... 27

7.0 QUALITY RISK MANAGEMENT APPLICATION FOR COMMISSIONING AND QUALIFICATION .. 28
 7.1 Commissioning 28
 7.2 Risk-based Approach to Determine Appropriate Carry-forward of Testing 28
 7.3 Qualification ... 30
 7.4 Developing the Commissioning and Qualification Strategy ... 31

8.0 QUALITY RISK MANAGEMENT IN QUALITY SYSTEMS .. 32
 8.1 Quality Risk Management for Discrepancy Management System ... 34
 8.1.1 Risk-Based Approach to Categorization of the Discrepancy 35
 8.1.2 Risk Evaluation 36
 8.2 Risk Assessment to Determine Corrective and Preventive Actions 37
 8.2.1 Tool Selection 37
 8.2.2 Defining Scope and Boundaries 38
 8.2.3 Risk Identification 38
 8.2.4 Risk Analysis 38
 8.2.5 Risk Evaluation 39
 8.2.6 Risk Documentation 40
 8.2.7 CAPA Effectiveness 40
 8.3 Quality Risk Management for Change Management ... 41
 8.3.1 Risk-Based Approach to Categorizing the Change ... 42
 8.3.1.1 Risk Evaluation 42
 8.3.1.2 Risk Assessment Activities 43
 8.3.1.3 Tool Selection 43
 8.3.1.4 Risk Assessment 43
 8.3.1.5 Risk Evaluation Post Assessment 44
 8.3.1.6 Risk Documentation 44
 8.3.2 Quality Risk Management for Ongoing Monitoring of Manufacturing Systems 45
 8.4.1 Focus of Ongoing Monitoring 45
 8.4.2 Frequency of Ongoing Monitoring 47
 8.4.3 Alert/Action Limits 47
 8.4.4 Investigation and CAPA 47
 8.5 Quality Risk Management for Periodic Assessment/Requalification 48
 8.5.1 Risk Review .. 49
 8.5.2 System Robustness 49
 8.5.3 Periodic Assessment and Risk Review Criteria Development 51
 8.5.4 Assessment and Risk Review 51
 8.5.5 First- and Second-line Data 52
 8.5.6 Risk Review 53
 8.5.7 Fitness for Intended Use 53
 8.5.8 Requalification 54
 8.5.9 Quality Risk Management Application for Decommissioning 54

9.0 TOOLS AND TEMPLATES 54

10.0 CONCLUSION ... 61

www.pda.org/bookstore
11.0 REFERENCES .. 62
12.0 ADDITIONAL READING............................ 62
13.0 APPENDIX I: CASE STUDY 1................... 63
 13.1 Background .. 63
 13.1.1 Manufacturing Operations 63
 13.1.2 Project Charter 64
 13.1.3 Project Execution Plan 64
 13.1.4 Tool Selection 64
 13.2 Quality Risk Management Plan (QRM) 66
 13.2.1 QRM Application for System Design 66
 13.2.1.1 Quality User Requirements Specifications (URS) 66
 13.2.1.2 User Requirement Specification for the New Isolator 67
 13.2.1.3 System Description 67
 13.3 System Characterization 69
 13.4 Design Risk Assessment 74
13.5 Commission and Qualification Strategy 78
 13.5.1 Risk Assessment to Determine Deviation Response 80
 13.5.2 Risk Assessment to Determine Corrective Actions 82
 13.6 QRM for Change Management and CAPA 84
 13.7 CAPA Effectiveness 87
14.0 APPENDIX 2: CASE STUDY 2 88
 14.1 Background .. 88
 14.2 System Impact Assessment...................... 88
 14.2.1 Manufacturing System Description 88
 14.2.2 Intended Use Summary 89
 14.2.3 Manufacturing System Boundary 89
 14.3 User Requirement Specifications 89
 14.4 Criticality Assessment 90
 14.5 Design Risk Assessment 91
 14.6 Requirements Traceability Matrix 95

FIGURES AND TABLES INDEX

Figure 3.0-1 Model of Typical Quality Risk Management Process from ICH Q9 6
Table 3.1-1 Example of Risk Question/Statement..... 7
Table 3.2-1 Roles and Responsibilities at the Initiation of the QRM Process 8
Table 3.6-1 Example of Risk Communication Matrix 12
Figure 4.0-1 ICH Q10 Pharmaceutical Quality System .. 13
Figure 4.0-2 Manufacturing System Lifecycle and Risk Management 13
Table 4.0-1 Risk Management Intent and Output ... 14
Table 4.2-1 Probability of Occurrence 15
Table 4.2-2 Consequences or Impact 15
Table 4.2-3 Risk Estimation Matrix 15
Table 4.2-4 PEP Risk Assessment 15
Table 6.1.1-1 Process QRM Approach 17
Figure 6.1.1-1 Pharmaceutical Operations Hierarchy ... 18
Figure 6.1.1-2 Flowchart of Developmental Process 18
Figure 6.1.1-3 Simplified Failure Chain 18
Figure 6.1.1-4 Simplified Chain of Failure Mode in the Process FMEA (Process vs. Design) 18
Figure 6.1.1-5 Failure Mode Chain of CAs at the Component Level 18
Figure 6.1.1-6 Structure of PRA in an FMEA Model 19
Table 6.1.1-2 Process FMEA for Saline Solution Preparation 20
Table 6.1.1-3 HACCP for Vial Washing and Sterilization 20
Figure 6.1.1-7 Hazard Analysis Structure/HACCP Model 20
Table 6.1.2-1 Summary of Inputs, Process, and Outputs for a System Risk Assessment (SRA) 21
Table 6.1.2-2 Critical Aspect Identification of a Buffer Preparation System 23
Table 6.1.3-1 Comparison of System Characterization Approaches 24
Table 6.2-1 Design Risk Assessment 25
Table 6.3-1 Example of Requirements Traceability Matrix 27
Table 7.2-1 Scoring Criteria for Risk Level Associated with the Critical Aspect 28
Table 7.2-2 Scoring Criteria for Quality and Documentation System Robustness 29
Table 7.2-3 Outcomes of Risk Level and Quality System Robustness Scores 29
Table 7.2-4 Score Criteria for Likelihood of System Change 30
Table 7.2-5 Score for Likelihood of System Change ... 30
Table 13.4-9 Risk Level of CADEs 77
Table 13.4-10 Requirements Traceability Matrix –
Design Qualification (DQ) 78
Table 13.5-1 Requirements Traceability Matrix –
C&Q .. 79
Table 13.5.1-1 Risk Statement 80
Table 13.5.1-2 Risk Associated with Deviation Event 80
Figure 13.5.1-1 Quality Risk Management Applications in Quality Systems 80
Table 13.5.1-3 Example of Severity Risk Level Definitions .. 81
Table 13.5.1-4 Example of Probability or Likelihood of Occurrence Risk Level Definitions 81
Table 13.5.1-5 Example of Risk Matrix 81
Table 13.5.1-6 Example of Risk Actions 81
Table 13.5.1-7 Discrepancy Event 82
Table 13.5.1-8 Risk Statement 82
Figure 13.5.2-1 Documentation Process for Risk Assessment – CAPA 82
Table 13.5.2-1 Risk Associated with Deviation Event (Initial Deviation Evaluation) 83
Table 13.5.2-2 Risk Associated with Deviation Event .. 83
Table 13.5.2-3 Risk Associated with Deviation Event – Modified Detection Control 83
Figure 13.6-1 Documentation Process for Risk Assessment – Change Management 84
Table 13.6-1 Categorization of Changes and Actions .. 85
Table 13.6-2 Categorization of Proposed Changes and Actions 85
Table 13.6.3 Risk Statement to include Proposed Change .. 85
Table 13.6-4 Severity Risk Definitions .. 85
Table 13.6-5 Probability or Likelihood of Occurrence Risk Definitions 86
Table 13.6-6 Risk Actions .. 86
Table 13.6-7 What-if Analysis .. 86
Table 13.6-8 Risks Re-scored to Reflect Identified High Risks and Mitigation 87
Table 13.6-9 Detection Controls – Reassessment Confirmed 87
Figure 14.2.1-1 Buffer Preparation and Hold Tank .. 88
Table 14.3-1 Requirements for Buffer Preparation and Hold Tank 89
Table 14.3-2 GMP Impact Assessment Requirements .. 90
Table 14.4-1 Identification of Critical Aspects .. 90
Table 14.5-1 Severity Criteria .. 91
Table 14.5-2 Probability of Occurrence ... 91
Table 14.5-3 Risk Matrix .. 91
Table 14.5-4 Risk Tolerance Matrix ... 92
Table 14.5-5 Design Risk Assessment ... 92
Table 14.6-1 Risk Traceability Matrix for BPH Tank .. 95
1.0 Introduction

Identifying and managing risk in the pharmaceutical and biopharmaceutical industry is vital to establishing and enhancing understanding of medicinal products, processes, and production and supporting manufacturing systems to minimize potential negative impacts on patients. The industry and health authorities share the common goal of protecting the quality of the product and public health through the reliable supply of safe and effective medicines. Yet, the processes and systems involved in drug product manufacturing inherently entail some degree of risk. Left unmanaged, this could jeopardize the ability to achieve the goal of manufacturing quality and safe drug products. The application of Quality Risk Management (QRM) principles and practices can be used to ensure that high-quality medicines are available to the patient when needed.

Although ICH Guideline Q9, *Quality Risk Management* (1), presents general principles of risk management, examples of various risk management tools and potential areas where risk management may be applied, it does not provide details on how to use QRM principles or tools to manage risks throughout the design, qualification, and operation of manufacturing systems (see PDA Technical Report 54, *Implementation of Quality Risk Management for Pharmaceutical and Biotechnology Manufacturing Operations* (2)). In applying QRM to the design, it is possible to determine the potential causes of process failure and identify control elements to manage the failure modes/hazards to an acceptable level of risk.

1.1 Purpose

This technical report provides a practical guide on how to manage quality risks throughout the manufacturing system lifecycle and illustrates concepts through two case studies, thereby bridging the gap.

1.2 Scope

The information in this technical report is applicable to both new and existing manufacturing systems for clinical and commercial drug substances and products, packaging, warehousing, and critical utility systems. It focuses on manufacturing systems determined to have an impact on product quality. The inherent assumption is that each firm will adapt this content according to its specific needs. QRM deliverables should be based on risk to product/patient, novelty, complexity, and design input (level of customization).

This technical report does not represent or replace regulatory requirements or guidances, nor does it establish legally enforceable guidelines.

1.3 Overview

ICHQ9 provides a standard approach for the application of risk management activities to the manufacturing system lifecycle:

The risk management process should be initiated prior to design of the system. Quality Risk Management can be used to focus the design and specification development effort. Process and product knowledge evolve over the course of the pharmaceutical development program. Early planning facilitates appropriate data gathering from Stage 1, Process Design, in which a quality risk assessment is performed subsequent to initially identifying the critical quality attributes and defining the manufacturing process and associated critical process parameters (3).

Due to the pace of change that may occur early in the manufacturing system lifecycle, risk assessments and identified controls may require frequent updates. Manufacturing system definition and design documents should be updated when controls/critical aspects are identified to reduce residual risk to an acceptable level.

Controls/CAs should be incorporated during the design process, verified at design review/design qualification, and verified during the installation and operational test phases of the qualification lifecycle.