Technical Report No. 55
Detection and Mitigation of
2,4,6-Tribromoanisole and
2,4,6-Trichloroanisole Taints and
Odors in the Pharmaceutical and
Consumer Healthcare Industries
PDA Task Force on Detection and Mitigation of 2,4,6-Tribromoanisole and 2,4,6-Trichloroanisole Taints and Odors in the Pharmaceutical and Consumer Healthcare Industries

Authors
Anil Sawant, Ph.D. (Chair), Johnson & Johnson Consumer Companies, Inc.
William Callahan, Ph.D., Depomed
John Clark, M.D., MSPH, Risk Benefits
Anthony M. Cundell, Ph.D., Merck & Co., Inc.
Jonine Greyling, Ph.D., Johnson & Johnson Consumer Products Company
Robert Johnson, RAJ Associates
Douglas Knowby, Ph.D., Johnson & Johnson Consumer Products Company
Janet Lim, M.D., Johnson & Johnson Consumer Companies, Inc.
Wendy Luo, Ph.D., Bristol-Myers Squibb Company
William J. Powers, Jr., Ph.D., Johnson & Johnson Consumer Companies, Inc.
Megan Sewell, Merck & Co., Inc.
Edward J. Smith, Ph.D., Packaging Science Resources, LLC
Katherine A. Stetson, GlaxoSmithKline
Dirk E. Stevens, Ph.D., Coviden Pharmaceuticals
James Strickland, Pfizer, Inc.
Eric Thostesen, Janssen Pharmaceutical Company
Annalisa Torrente, (Project Manager)*, Johnson & Johnson Consumer Companies, Inc.
David A. Ulrich, Abbott Laboratories
Christine Vietri, AstraZeneca Pharmaceuticals
Gary E. Wilson, West Pharmaceuticals Services, Inc.

Contributors
William Beierschmitt, Ph.D., Pfizer, Inc. Richard V. Levy, Ph.D., Parenteral Drug Association
Michael Fairbanks, Perrigo Gustavo S. Rodriguez, Rexam Healthcare
Rachael Humphreys, Mylan Doug Ross, M.D., Pfizer, Inc.
Nirdosh Jagota, Ph.D., Genentech, Sarah Sellers, PharmD, MPH, Q-Vigilance
a Member of the Roche Group

* PDA and the Task Force want to thank Annalisa Torrente for spending a considerable amount of time volunteering as the project manager for this Technical Report.

The content and views expressed in this Technical Report are the result of a consensus achieved by the authorizing Task Force and are not necessarily views of the organizations they represent.
Detection and Mitigation of 2,4,6-Tribromoanisole and 2,4,6-Trichloroanisole Taints and Odors in the Pharmaceutical and Consumer Healthcare Industries

Technical Report No. 55

© 2012 Parenteral Drug Association, Inc.
All rights reserved.
EXECUTIVE SUMMARY

Since December 2009, there have been multiple recalls of pharmaceutical and over the counter drug products by at least five companies for musty, moldy odor caused by trace levels of 2,4,6-Tribromoanisole (TBA) taints. Based on literature review, a bench marking survey and data made available to the PDA Task Force it was concluded that the taint was caused by trace contamination of High Density Polyethylene packaging containers with highly volatile and odorous TBA during transportation and storage on wood pallets constructed in Puerto Rico from 2,4,6-Tribromophenol (TBP)-treated lumber from South America. The moisture content of the wood was sufficient to promote fungal growth resulting in the biomethylation of the halophenol to its haloanisole.

The trace concentrations found in customer complaint samples, i.e., ppb-ppt levels, require matrix-specific sampling, pre-concentration, and gas chromatography-mass spectrometry/olfactory detection that is only suitable for analytical confirmation of taints and not routine monitoring.

Possible risk mitigation steps identified by the Task Force include not constructing pallets from TBP treated lumber, controlling the moisture content of wood to levels not conducive to fungal growth, improved supply chain awareness of haloanisole taints, other sources of halophenols and adequate environmental control and ventilation in warehouses and during transportation.

Toxicological and safety studies conducted on TBA demonstrated no mutagenicity or systemic toxicology in rodents when dosed for up to 28 days at levels a billion-fold higher than potential human exposure from the recalled product. TBA dosing produced no diarrhea or any macroscopic or microscopic pathological effects along the GI tract in rat toxicity studies. Although nausea was reported by consumers sensing the musty, moldy odor, adverse event analysis by multiple recalling companies have not established a causal relationship between TBA and gastrointestinal events. Therefore, reactions of disgust to TBA taints appears to be sensory and/or behavioral and not toxicological and therefore is not a safety risk.

Based on the high margin of safety demonstrated in toxicity studies, there is no meaningful analytical threshold that can be based on toxicity. It is therefore necessary for individual companies to consider how the odor is being perceived by their customers and the likelihood that perception to the odor could impact patient therapy, i.e. the concern is that the musty, moldy odor from these taints could increase the likelihood that patients will not take their medication.
Table of Contents

1.0 INTRODUCTION ..1
1.1 Scope and Purpose..1
1.2 Overview of the Uses of Halophenols
2,4,6-Tribromophenol (TBP) and
2,4,6-Trichlorophenol (TCP) in Industry............1
1.3 Fungal Biomethylation of 2,4,6-Tribromophenol (TBP) and
2,4,6-Trichlorophenol (TCP) To Generate 2,4,6-Tribromoanisole (TBA) and
2,4,6-Trichloroanisole (TCA)2
1.4 Sensory and Physiochemical
Properties of 2,4,6-Tribromophenol (TBP), 2,4,6-Trichlorophenol (TCP),
2,4,6-Tribromoanisole (TBA), and Related
Compounds ...4
1.5 Migration and Diffusion of 2,4,6-Tribromophenol (TBP), 2,4,6-Trichlorophenol (TCP),
2,4,6-Tribromoanisole (TBA), and
2,4,6-Trichloroanisole (TCA)............................6
1.6 Quality and Risk Management6

2.0 GLOSSARY OF TERMS ..7

3.0 PRINCIPLES AND TOOLS13
3.1 The Supply Chain...13
3.2 Good Distribution Practices (GDPs)14
3.3 Quality Risk Management 14

4.0 INDUSTRY BENCHMARKING15
4.1 Industry Examples of Encounters in Supply Chain That Resulted in Product Tainting15
4.2 TBA and TCA Taint Examples from Food and Beverage Industries..15
4.3 TBA and TCA Taint Examples from Pharmaceutical and Consumer Healthcare Industries ...17
4.4 PDA TBA Industry Benchmarking Survey20

5.0 DISTRIBUTION FLOW21
5.1 Pallets...22
5.2 Shipping Containers24
5.3 Corrugate ..25
5.4 Plastics ..26

6.0 ANALYTICAL ..27
6.1 Overview...27
6.2 Method Review ..27
6.3 Method Acceptance Criteria (for Haloanisole and Halophenol Concentrations)28
6.4 Laboratory Controls29
6.5 Environmental Monitoring34
6.6 Sensory Panel Examination of Material for Off-Odors ..35
6.7 Moisture Content of Wood37

7.0 PRODUCT QUALITY COMPLAINTS, ADVERSE EVENTS, NOTIFICATION TO REGULATORY AGENCY, AND RECALL PROCEDURES39
7.1 Product Quality Complaints39
7.1.1 TBA Signal Identification and Verification
(Complaint Data)40
7.1.2 Complaint Investigation40
7.1.3 Root Cause Analysis40
7.2 Adverse Events (AEs)41
7.3 Notification to Regulatory Agency41
7.4 Recalls ..41

8.0 TOXICOLOGY AND SAFETY42
8.1 Introduction and Background.....................42
8.2 Literature Review on TBA42
8.3 Toxicity of Haloanisoles and Halophenols43
8.3.1 TCP ..43
8.3.2 TBP ..44
8.4 Data Generated on TBA45
8.4.1 Non-Clinical (Toxicology)45
8.4.2 Bacterial Reverse Mutation Assay (Ames) ...45
8.4.3 Single-Dose Oral Rat Study45
8.4.4 5-Day Repeat-Dose Oral Rat Study46
8.4.5 28-Day Repeat-Dose Oral Rat Study46
8.4.6 TBA Exposure in Rats46
8.5 Discussion ..47
8.5.1 TBA Theoretical Thresholds47
8.6 Results/Conclusions49

9.0 QUALITY RISK MANAGEMENT50
9.1 Risk Assessment ...51
9.1.1 Risk Identification51
9.1.2 Risk Analysis53
9.1.3 Risk Evaluation53
9.2 Risk Control ...53
9.2.1 Risk Reduction53
9.2.1.1 In Pallet54
9.2.1.2 In Warehouse54
9.2.1.3 In Shipping54
9.2.1.4 In Customer Complaints54
9.2.2 Risk Acceptance54