

Technical Report No. 57

Analytical Method Validation and
Transfer for Biotechnology Products

2012

PDA Analytical Method Validation And Transfer For Biotechnology Products Task Force Members

Authors	Contributors
Stephan O. Krause , Ph.D., Chair, MedImmune	Patricia W. Cash , Ph.D., MedImmune
Florence Baudoux , Ph.D., GlaxoSmithKline	Larissa Chirkova , Novozymes
Pierre Douette , Ph.D., Eurogentec S.A.	Marta Germano , Pharming Technologies
Nicole Giblein , Ph.D., Sanofi Pasteur, France	Siegfried Giess , Ph.D., Paul-Ehrlich Institute
Alice E. Grebanier , Ph.D., Centocor R&D	Rashmi Rawat , Ph.D., U.S. FDA
Rajesh Krishnamurthy , Ph.D., Zyngenia, Inc.	
Carl-Gustav, Millinger , Ph.D., Swedish Orphan Biovitrum	
Frank Moffatt , Ph.D., Solvias AG	
Dwayne Neal , SAIC-Frederick, Inc.	
Phillip Ramsey , SAIC-Frederick, Inc.	
Michael Rooney , Ph.D., BioTechLogic	
Melissa J. Smith , MJ Quality Solutions	
Michael Warncke , Ph.D., Bayer HealthCare	
Earl K. Zablackis , Ph.D., Sanofi Pasteur, USA	

The content and views expressed in this Technical Report are the result of a consensus achieved by the authorizing Task Force and are not necessarily views of the organizations they represent.

Analytical Method Validation and Transfer for Biotechnology Products

Technical Report No. 57

ISBN: 978-0-939459-41-4

© 2012 Parenteral Drug Association, Inc.

All rights reserved.

Table of Contents

1.0 Introduction.....	1	4.4.1 AMV Protocol	34
1.1 Scope and Purpose.....	1	4.4.2 AMV Report	35
2.0 Glossary of Terms	4	5.0 Analytical Method Transfer	36
2.1 List of Abbreviations	9	5.1 Prerequisites to AMT.....	36
3.0 General Assessment of Method Validation Readiness	10	5.2 General AMT Strategy.....	37
3.1 General Risk Assessment Process	13	5.3 Design of Comparative (AMT) Test Studies	38
3.2 Setting AMV Protocol Acceptance Criteria	16	5.3.1 Selecting AMT Performance Characteristics	38
3.2.1 Rationale.....	16	5.3.2 Sample Selection and AMT Study Design	38
3.2.2 Consistent Risk Assessment to Set Acceptance Criteria.....	17	5.3.2.1 Specific AMT Study Design for Highly Variable Methods.....	40
3.3 Example for AMV Protocol Acceptance Criteria	18	5.4 Acceptance Criteria and Statistical Evaluation	41
3.3.1 Setting and Justifying Acceptance Criteria for the AMV Protocol	19	5.4.1 Acceptance Criteria for AMT Study	41
4.0 Analytical Method Validation.....	20	5.4.2 Statistical Tests for AMT Studies	42
4.1 AMV Characteristics	22	5.5 Sample Preparation	43
4.1.1 Accuracy	22	5.6 Deviations and Failures	43
4.1.2 Repeatability Precision	22	5.6.1 Invalid Assays	43
4.1.3 Intermediate Precision.....	23	5.6.2 Handling of Outlaying Results and Retesting	43
4.1.4 Reproducibility (Precision)	24	5.6.3 AMT Study Extension	44
4.1.5 Specificity.....	24	5.7 AMT Documentation	44
4.1.6 Linearity.....	24	5.8 AMT Example.....	44
4.1.7 Range	25	5.9 AMT Continuum	48
4.1.8 Detection Limit (DL).....	25	6.0 Analytical Method Comparability	49
4.1.9 Quantitation Limit (QL)	26	6.1 Replacing Analytical Methods	49
4.1.10 Typical AMV Execution Matrix	26	6.2 Demonstrating AMC in Post-Validation Studies	50
4.2 Additional AMV Characteristics to be Considered	27	6.2.1 Qualitative Tests	50
4.2.1 Assay Bias and Analytical Response Factors	29	6.2.2 Quantitative Tests.....	51
4.2.2 Stability of Samples, Standards, Controls, Reagents, and Material	29	6.3 Design of AMC Study	51
4.2.3 System Suitability	30	6.3.1 Application and Acceptance Criteria	52
4.2.4 Sample Suitability	30	6.3.2 AMC Examples	52
4.2.5 Statistical Data Reduction	31	6.3.2.1 Demonstrating Noninferiority	52
4.2.6 Robustness	31	6.3.2.2 Demonstrating Superiority.....	53
4.2.7 Degradation	31	6.3.2.3 Demonstrating Equivalence	54
4.2.8 Significant Digits in Reported Results.....	32	7.0 Analytical Method Maintenance	57
4.2.9 Validating Other Analytical Technologies	33	7.1 Monitoring Analytical Method Performance.....	57
4.3 Analytical Method Verification	33	7.2 Periodic Review.....	58
4.3.1 Verification Process.....	33	7.3 Replacing Analytical Method Components.....	61
4.3.2 Verification Requirements.....	34	8.0 AMV Discrepancies/Failures	62
4.3.3 Retrospective Data.....	34	8.1 Investigation and Decision Process	63
4.4 AMV Documentation	34	9.0 References.....	65

FIGURES AND TABLES INDEX

Figure 1.1-1	Analytical Method Life Cycle Steps from Selection to Qualification or Validation ... 2	Table 5.3.1-1	Examples of Method Types and AMT Performance Characteristics 38
Figure 1.1-2	Example of a Method Lifecycle from the Identification of the Intended Use to Post-Validation Maintenance..... 3	Table 5.3.2-1	Examples of AMT Execution Matrices and Acceptance Criteria 39
Figure 3.0-1	Example of Assessment of Method Validation Readiness Flow Path 10	Table 5.3.2.1-1	Type I and Type II errors 40
Table 3.0-1	General Method Readiness Assessment Guide..... 11	Table 5.3.2.1-2	General AMT Design Parameters and Considerations 41
Table 3.1-1	The Five General AMV Classes and Prospective AMV Studies 14	Table 5.7-1	Typical AMT Protocol Sections 44
Table 3.1-2	Points to Consider in Overall Risk Assessment for Analytical Methods. 15	Table 5.8-1	AMT Study Design 45
Table 3.1-3	General Risks to Patient and/or Firm. 16	Table 5.8-2	AMT Transfer Results 46
Figure 3.2.2-1	Risk-Based AMV Protocol Acceptance Criteria 18	Figure 5.8-1	Graphical Representation of Potency Results Per Potency Level Between Laboratories 47
Table 3.3-1	Historical Data for Manufacturing Process, Assay Performance, and Suggested Limits for Accuracy and (Intermediate) Precision..... 19	Figure 5.8-2	Graphical Representation of the Combined Percent Recoveries Between Laboratories for All Three Concentration Levels 48
Table 4.0-1	Minimum AMV Characteristics Per ICH Q2(R1) 20	Table 6.1-1	Suggested Statistics to Assess AMC for Each Method Performance Characteristic 50
Table 4.0-2	ICH Q2(R1) Requirements and Suggested Reported Results and Acceptance Criteria 21	Table 6.3.2.1-1	Results for the Noninferiority Test: Candidate Method vs. EP/USP Sterility . 53
Table 4.1.3-1	Intermediate Precision Matrix..... 23	Figure 6.3.2.1-1	95% Confidence Interval for Noninferiority Test: Candidate Method vs. EP/USP Sterility 53
Table 4.1.3-2	Mixed Linear Model Results for Intermediate Precision Matrix..... 24	Table 6.3.2.2-1	Results for the Superiority Test: New Method (7x per week) vs. EP/USP Sterility (2x per week) 54
Table 4.1.10-1	Typical AMV Execution Matrix for a Quantitative Limit Test 27	Figure 6.3.2.2-1	95% Confidence Intervals for Superiority Test: Candidate Method vs. EP/USP Sterility 54
Table 4.2-1	ICH Q2(R1) Requirements and Suggested Reported Results and Acceptance Criteria..... 28	Table 6.3.2.3-1	Equivalence Test Results Comparing SDS-PAGE (Reference) to CE 55
Table 4.2.2-1	Prospective Expiry Date Study Protocol for a Critical In-House Reagent 30	Figure 6.3.2.3-1	90% Confidence Intervals for Equivalence: Candidate Method vs. EP/ USP Sterility 55
Table 4.2.8-1	Confirming Significant Digits in Reported Test Results 32	Figure 7.1-1	Combining Laboratory (Assay Control) and Manufacturing Control Charts ...58
Table 4.3-1	Verification Characteristics for Typical Compendial Method Types and Resulting Specifications..... 34	Table 7.2-1	Suggested Checklist Items to Assess Validation Status..... 60
Table 4.4.1-1	Typical AMV Protocol Elements 35	Figure 8.0-1	Failing Acceptance Criteria – The “Recovery Mission” 62
Table 4.4.2-1	Typical AMV Report Elements 35	Table 8.1-1	Checklist of Most Common Questions and Possible Information Sources.... 64
Table 5.1-1	Suggested AMT Responsibility Matrix.. 37		

1.0 Introduction

This Technical Report (TR) provides risk-based guidance for Analytical Method Validation (AMV), which follows Analytical Method Development (AMD) or Analytical Method Qualification (AMQ), and contains risk-based guidance for other, related method lifecycle steps, such as Analytical Method Transfer (AMT).

The guidance provided here builds upon the International Conference on Harmonization (ICH) Q2 (R1) guidelines and includes additional considerations for analytical platform technology (APT) methods as well as the impact of stakeholder considerations, and essentially all modern quality expectations as recommended in the ICH Q8 (R2), Q9, and Q10 guidelines (1–4).

Similar to the manufacturing process, an analytical method can also be considered to be a process. The validation strategy for analytical methods could therefore conceptually follow those of Process Validation (5). AMV can then be defined as the collection and evaluation of data, from the analytical method development stage throughout routine QC testing, which establishes scientific evidence that an analytical method is capable of consistently delivering accurate and reliable results.

1.1 Scope and Purpose

This TR is to provide practical and strategic guidance to efficiently use historical data and knowledge to design suitable risk-based AMV studies, and set appropriate protocol acceptance criteria. The typical method lifecycle steps prior, during, and beyond the AMV studies are illustrated in **Figure 1.1-1**. The typical steps prior to validation, usually performed at early pharmaceutical development stages, are included in this figure to show the dependency among early- and late-stage lifecycle steps. The AMV process begins with the validation readiness assessment and continues with the post-validation steps, maintenance (validation continuum), transfer(s), comparability, as they may apply to the continuous demonstration of analytical method suitability. The typical sequence of all prevalidation, validation and post-validation steps, as illustrated in the bottom half of **Figure 1.1-1**, is reflected in the sequence of sections in this TR. Instead of dealing in great detail with many possible exceptions and special considerations, this TR is intended to provide practical guidance to typical development processes and AMV studies.

The guidance presented in this TR applies to all biotechnological manufacturers and all contract development and manufacturing organizations. This TR does not provide specific guidance for the timing of AMV study execution with respect to the parallel product development lifecycle stages or guidance for analytical instrument qualification.

It should be considered that various new analytical technologies and/or the use of Process Analytical Technology (PAT) methods may suggest some modification to the validation strategies presented here. Specific aspects for the validation of bioassays such as curve fitting models and statistical reference-to-sample parallelism requirements are not covered in this TR. Case-specific considerations for microbiological method validation such as statistical sampling and testing environment conditions are also not covered as they depend on the analytical methodology and the intended use.

AMV studies are typically executed for future routine-use methods but may not be required for analytical methods used in support of pharmaceutical development (5). **Figure 1.1-2** illustrates the two different analytical method lifecycle paths separated according to the intended use of a particular method. The intended use of a particular method can be assessed early as part of the overall quality target product profile (Q TPP) and a method should be selected accordingly. The intended use should be further considered when developing, qualifying and validating analytical methods. For example, measuring a critical quality attribute (CQA) or a critical process parameter (CPP) may require a more rigorous approach to the overall validation process. The intended use of a method can change during the method and/or product lifecycle(s) due to a specification change or other reasons.