The content and views expressed in this technical report are the result of a consensus achieved by the authoring task force and are not necessarily views of the organizations they represent.
Paradigm Change in Manufacturing Operations (PCMO℠)

PDA launched the project activities related to the PCMO program in December 2008 to help implement the scientific application of the ICH Q8, Q9 and Q10 series. The PDA Board of Directors approved this program in cooperation with the Regulatory Affairs and Quality Advisory Board, and the Biotechnology Advisory Board and Science Advisory Board of PDA.

Although there are a number of acceptable pathways to address this concept, the PCMO program follows and covers the drug product lifecycle, employing the strategic theme of process robustness within the framework of the manufacturing operations. This project focuses on Pharmaceutical Quality Systems as an enabler of Quality Risk Management and Knowledge Management.

Using the Parenteral Drug Association’s (PDA) membership expertise, the goal of the Paradigm Change in Manufacturing Operations Project is to drive the establishment of ‘best practice’ documents and/or training events in order to assist pharmaceutical manufacturers of Investigational Medicinal Products (IMPs) and commercial products in implementing the ICH guidelines on Pharmaceutical Development (ICH Q8, Q11), Quality Risk Management (ICH Q9) and Pharmaceutical Quality Systems (ICH Q10).

The PCMO program facilitates communication among the experts from industry, university and regulators as well as experts from the respective ICH Expert Working Groups and Implementation Working Group. PCMO task force members also contribute to PDA conferences and workshops on the subject.

PCMO follows the product lifecycle concept and has the following strategic intent:

• Enable an innovative environment for continual improvement of products and systems
• Integrate science and technology into manufacturing practice
• Enhance manufacturing process robustness, risk based decision making and knowledge management
• Foster communication among industry and regulatory authorities

For more information, including the PCMO Dossier, and to get involved, go to www.pda.org/pcmo
Table of Contents

1.0 INTRODUCTION ...1
 1.1 Purpose ..1
 1.2 Scope ..1

2.0 GLOSSARY OF TERMS ...2

3.0 TECHNOLOGY TRANSFER PROJECT3
 3.1 Technology Transfer Project Objectives3
 3.2 Types of Technology Transfer3
 3.3 TTP Oversight ..4
 3.4 Multidisciplinary Technology
 Transfer Project Team4
 3.4.1 Administrative and Regulatory Functions6
 3.4.1.1 Project Committee6
 3.4.1.2 Project Manager6
 3.4.1.3 Budget Manager7
 3.4.1.4 Legal Office Representative7
 3.4.1.5 Project Facilitator7
 3.4.1.6 QA Leader ..7
 3.4.2 Operational Functions7
 3.4.2.1 Sending Unit and Receiving Unit7
 3.4.2.2 Team Leaders8
 3.4.2.3 R&D Representative8
 3.4.2.4 Combined Roles8
 3.4.3 Technology Transfer Unit8
 3.4.4 Organizational Model8
 3.4.5 Communications9
 3.4.6 Document Management10
 3.4.6.1 Common Technology Transfer
 Documents ..10
 3.4.6.2 Regulatory Documents11

4.0 TECHNOLOGY TRANSFER PROCESS12
 4.1 Stage 1: Planning ..12
 4.1.1 Project Rationale12
 4.1.2 Project Scope ..12
 4.1.2.1 Technology to be Transferred13
 4.1.2.2 Scale-up of Production Level14
 4.1.2.3 Control Philosophy14
 4.1.3 Control Strategy15
 4.1.3.1 Machine ..16
 4.1.3.2 Methods ..16
 4.1.3.3 Material ...16
 4.1.3.4 Manpower17
 4.1.3.5 Measurement17
 4.1.3.6 Mother Nature17
 4.1.3.7 Feasibility Reviews17
 4.1.4 Facility Design/Layout Considerations18

 4.1.4.1 Transfer from Non-GMP to GMP Facilities18
 4.1.4.2 New Facility Construction18
 4.1.5 Facility Fit Reports18
 4.1.5.1 Environmental Variables19
 4.1.5.2 Viral Segregation19
 4.1.5.3 Support Laboratory19
 4.1.6 Transfer of Documents20
 4.1.7 Technology Transfer Protocol20
 4.2 Stage 2: Process Readiness21
 4.2.1 Process Changes21
 4.2.2 Training ..22
 4.2.3 Development Data on Process
 Management ...22
 4.3 Stage 3: TTP Implementation and Qualification23
 4.3.1 Manufacturability Reviews23
 4.3.2 Transfer of Analytical Test Methods24
 4.3.3 Monitoring ...25
 4.3.3.1 Microbial Monitoring25
 4.3.3.2 In-Process Monitoring25
 4.3.4 Cleaning Validation26
 4.3.5 Process Validation26
 4.3.5.1 Components of Process Validation27
 4.3.5.2 Process Validation Studies27
 4.3.5.3 Required Documents28
 4.3.6 Campaign Summary Reports28
 4.3.7 Continued Monitoring28
 4.3.8 Application of cGMPs28
 4.4 Stage 4: Licensing and Manufacturing29
 4.4.1 Process Scale Up29
 4.4.2 Monitoring of Production Batches29
 4.5 Stage 5: Project Closure30

5.0 APPLICATION OF QUALITY RISK MANAGEMENT
TO TECHNOLOGY TRANSFER31
 5.1 Overview ...31
 5.2 QRM in Technology Transfer31
 5.3 Stages of QRM in Technology Transfer32
 5.3.1 QRM Planning32
 5.3.2 QRM Implementation (Execution and
 Control Stage)32
 5.3.3 Project Closure QRM32
 5.4 Risks of Technology Transfer33
 5.5 QRM Concepts and Approaches Used in
 Technology Transfer33
 5.6 QRM Planning ...35
 5.6.1 Selection of a QRM Approach35
 5.6.2 Creation of a QRM plan35
1.0 Introduction

Pharmaceutical technology transfer consists of planned and controlled actions that are based on well-defined acceptance criteria to convey a manufacturing process, analytical method, packaging component, or any other step or process along the pharmaceutical drug lifecycle from an originator site, known as a sending unit (SU), to a new site, the receiving unit (RU).

1.1 Purpose

The purpose of this technical report is to provide guidance and best practices for conducting technology transfer activities in the pharmaceutical industry.

1.2 Scope

The report provides an overview of the knowledge and skills used during a successful technology transfer project (TTP) along with references to consult, if necessary. The report includes practical examples of technology transfer activities. Rather than discuss a particular technology transfer topic, this report aims to provide a guide to safe TTP management.

This report does not address logistics and bridging stocks, which are comprehensively discussed in Technical Report No. 52: Guidance for Good Distribution Practices (GDPs) (1).

The technology transfer organizational elements outlined in this technical report might not be appropriate for all companies. Established practices or the availability of personnel will dictate how firms conduct technology transfer activities.