Authors

Arifa S. Khan, Ph.D., U.S. FDA/CBER, Co-Leader
Kathryn E. King, Ph.D., U.S. FDA/CDER, Co-Leader
Kerstin Brack, Ph.D., Charles River Laboratories
Jean-Pol Cassart, Ph.D., GSK Vaccines
Charles Chiu, MD, Ph.D., University of California, San Francisco
Houman Dehghani, Ph.D., Amgen
Paul Duncan, Ph.D., Merck & Co., Inc.
Crystal Jaing, Ph.D., Lawrence Livermore National Lab
John Kolman, Ph.D., BioReliance
David Munroe, Ph.D., SAIC-Frederick
Adam Palermo, Ph.D., Genzyme
Mark Plavsic, Ph.D., Genzyme
Rangarajan Sampath, Ph.D., Abbott
Tom Slezak, Lawrence Livermore National Lab
Garry Takle, Ph.D., Merck & Co., Inc.
Lanyn P. Taliaferro, Ph.D., U.S. FDA/CBER
Emiliano Toso, Ph.D., EMD Serono
Dominick Vacante, Ph.D., Janssen R&D
Hannelore Willkommen, Ph.D., RBS Consulting

Contributors

Laura Barberis, Ph.D., EMD Serono
Martin Wisher, Ph.D., BioReliance

DISCLAIMER: The findings and conclusions in this article should not be construed to represent the U.S. Food and Drug Administration’s views or policy. The content and views expressed in this technical report are those of the individual authors and are not necessarily views of the organization, regulatory authority, or governmental agency they represent. The mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. government.
Emerging Methods for Virus Detection

Technical Report No. 71

ISBN: 978-0-939459-77-9
© 2015 Parenteral Drug Association, Inc.
All rights reserved.
1.0 INTRODUCTION ... 1

1.1 Purpose .. 2
1.2 Scope.. 2

2.0 GLOSSARY OF TERMS 3

3.0 CONVENTIONAL VIRUS DETECTION METHODS .. 4
3.1 Assays for Routine Viral Testing 4
3.1.1 In Vivo Assays 4
3.1.1.1 Benefits and Limitations 5
3.1.2 Cell-Based In Vitro Assays for General Adventitious Viruses.............................. 5
3.1.2.1 Benefits and Limitations 5
3.1.3 Cell-Based In Vitro Assays for Detection of Specific Animal Viruses 6
3.1.3.1 Benefits and Limitations 6
3.1.4 Transmission Electron Microscopy 6
3.1.4.1 Benefits and Limitations 6
3.1.5 Retrovirus Detection Assays 7
3.1.6 PCR Assays.. 8
3.1.6.1 Benefits and Limitations 9
3.2 Additional Assays for Novel Cell Substrates.... 9

4.0 THE NEED FOR NEW TECHNOLOGIES FOR VIRUS DETECTION ... 10

5.0 DEGENERATE AND CONSENSUS PCR ASSAYS .. 11
5.1 Description of the Method 11
5.1.1 Consensus Sequence PCR Assays 12
5.1.2 Universal Amplification 12
5.2 Benefits and Limitations 13
5.3 Biopharmaceutical Applications 13

6.0 BROAD-RANGE PCR WITH ELECTROSpray IONIZATION MASS SPECTROMETRY (PCR/ESI-MS) .. 15
6.1 Description of Method................................. 15
6.1.1 Sample Preparation 16
6.1.2 Broad Virus Assays 16
6.1.3 Data Analysis 16
6.2 Benefits and Limitations 16
6.3 Biopharmaceutical Applications 17
6.3.1 General Microorganism Detection 17
6.3.2 Parvovirus Detection 18
6.3.3 Unknown Virus Detection 20
6.3.4 General Virus Detection 21

7.0 MASSIVELY PARALLEL SEQUENCING 23
7.1 Description of the Method 23
7.1.1 Sample Preparation 23
7.1.2 Sequencing Platforms 24
7.1.3 Data Analysis 25
7.2 Benefits and Limitations 27
7.3 Biopharmaceutical Applications 28
7.3.1 Case Studies 29

8.0 BROAD-SPECTRUM MICROBIAL DETECTION MICROARRAYS .. 31
8.1 Description of the Method 31
8.1.1 Overview of Different Pathogen Detection Microarrays 32
8.1.1.1 ViroChip .. 32
8.1.1.2 GreeneChip 32
8.1.1.3 Lawrence Livermore Microbial Detection Array (LLMDA) 33
8.2 Benefits and Limitations of Microarrays 34
8.3 Biopharmaceutical Applications 35

9.0 GENERAL CONSIDERATIONS AND SUMMARY...36
9.1 Particular Considerations for Sample Types and Preparation 38
9.2 Considerations for Bioinformatics 38

10.0 CONCLUSION .. 40

11.0 REFERENCES .. 41
FIGURES AND TABLES INDEX

Table 1.0-1 Viruses Detected in Biological Product Manufacturing 2
Table 3.1.5-1 Retrovirus Detection Assays......................... 8
Table 5.2-1 Benefits and Limitations of Degenerate PCR Assays .. 13
Figure 6.1-1 Schematic of the PCR/ESI-MS Approach for Pathogen Detection 15
Figure 6.3.2-1 Detection of MMV Using a Parvovirus Kit .. 19
Figure 6.3.2-2 Detection of MMV in Infected CHO Cell Culture over the Course of 12 Days Using an MMV-Specific Real-Time PCR and the Biosensor System 20
Table 6.3.1-1 Detection of Bluetongue Virus–Like (BTV) Sequences Using Base-Composition Signatures in Four Infected Cell Lines 21
Table 6.3.3-1 Detection of Bluetongue Virus–Like (BTV) Sequences Using Base-Composition Signatures in Four Infected Cell Lines 21
Table 6.3.3-2 Base-Composition Signature Analysis of BTV Amplicons 21
Table 6.3.4-1 Detection of Spiked Known Viruses and Endogenous Viruses Using Broad Viral Detection Panels 22
Table 7.0-1 Examples of MPS Platforms 23
Table 7.1.2-1 Characteristics of Available MPS Platforms ... 24
Table 7.1.2-2 Impact of Sequence Length on BLASTn Output 25
Table 7.2-1 Benefits and Limitations of MPS 28
Figure 7.3.1-1 Relationship of Virus Concentration to Read Count 30
Table 8.2-1 Benefits and Limitations of Microarrays ... 35
Table 9.0-1 Summary of Adventitious Virus Detection Methods 36

www.pda.org/bookstore
The potential for extraneous microbial agents to be present in biological medicines was recognized as early as the late nineteenth century, resulting in enactment of the 1902 Biologics Control Act in the United States. More rigorous federal regulations for the development and testing of biological products were passed following the well-publicized discovery of SV40 in poliovirus vaccines used in the 1950s (1,2).

International and national government organizations and regulatory agencies provide both recommendations and legal requirements, or codes, to manufacturers for developing a suitable testing design to ensure the safety and purity of their products. In the United States, the Food and Drug Administration (FDA) publishes recommendations through Guidance for Industry and Points to Consider documents as well as legal requirements through the Code of Federal Regulations (CFR), which defines and describes testing of biological medicinal products. In the European Union, the European Pharmacopoeia (PhEur) and the European Medicines Agency (EMA), together with the various national governing bodies, publish documents describing required testing practices and expectations. Throughout the rest of the world, attempts have been made to harmonize expectations and testing paradigms, with the goal of assuring that products do not contain infectious adventitious agents. The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) has made significant progress in establishing worldwide, harmonized best practices for approaches to adventitious agent detection and risk mitigation (3,4). Additionally, the World Health Organization (WHO) has updated TRS 878, Annex 1, Recommendations for the Evaluation of Animal Cell Cultures as Substrates for the Manufacture of Biological Medicinal Products and for the Characterization of Cell Banks (5).

Despite the required virus testing of biologic drugs, rare cases of introduction of adventitious agents into a production stream or product have been reported (Table 1.0-1). Of note, the majority of these contamination events were traced to raw materials used during manufacturing. Such events have served to refocus the effort to establish more effective surveillance programs, mitigation strategies, and use methods for enhancing adventitious agent detection. Although current methods for detecting adventitious viruses have provided a generally good safety record of biological medicines over the years, these methods may not detect latent or occult viruses, novel viruses, and even some known viruses. Emerging nucleic based methods have demonstrated potential to fill these gaps for virus detection.