Technical Report No. 72
Passive Thermal Protection Systems for Global Distribution: Qualification and Operational Guidance

Authors

Richard Peck, TOWER Cold Chain Solutions, Co-Chair
Peter Mirabella, QProducts & Services, Co-Chair
Royce Heap, Fisher Clinical Services
Travis Hudson, BioConvergence LLC

Karl Kussow, FedEx Custom Critical
Peter Lockett, TP3 Global
Désirée Valentine, Dayla Partners

Contributors

Erik J. van Asselt, PhD, Merck, Sharp & Dohme B.V. (MSD)
Gert-Jan van Diest, AbbVie
Jean-Pierre Emond, Georgia Tech Research Institute
Andrew Green, Laminar Medica

Paul Harber, Modality Solutions
Richard Harrop, TOPA Verpakking
Claude Jolicoeur, Mckesson
Ken Maltas, Sonoco Thermosafe

DISCLAIMER The content and views expressed in this Technical Report are the result of a consensus achieved by the authorizing Technical Report Team and are not necessarily views of the organizations they represent.
Passive Thermal Protection Systems for Global Distribution: Qualification and Operational Guidance

Technical Report No. 72

© 2015 Parenteral Drug Association, Inc.
All rights reserved.
Table of Contents

1.0 INTRODUCTION .. 1
 1.1 Purpose and Scope 1

2.0 GLOSSARY OF TERMS 3

3.0 OVERVIEW .. 5
 3.1 Purpose of Passive Thermal Protection Systems ... 5
 3.2 Basic Principles of Thermodynamics and the Impact on Passive Thermal Protection System Performance .. 5
 3.2.1 Heat Transfer 5
 3.2.2 Phase Change 8
 3.3 Thermal Covers 9
 3.3.1 Single-Skin Fabric/Composite 9
 3.3.2 Bubble Foil 9
 3.4 Thermal Blankets / Quilts 10
 3.4.1 Outer and Inner Layers 10
 3.4.2 Internal Insulation 10
 3.5 Thermal Passive Shipping System 10
 3.6 Semi-Active Thermal Passive Shipping System 12
 3.7 Materials used in Construction of Passive Thermal Protection Systems .. 12
 3.7.1 Outer Packaging Materials 12
 3.7.1.1 Paper Corrugate 12
 3.7.1.2 Plastic Corrugate 13
 3.7.2 Insulation Materials 13
 3.7.2.1 Polyurethane and Polyisocyanurate 13
 3.7.2.2 Polystyrene 14
 3.7.2.2.1 Expanded Polystyrene 14
 3.7.2.2.2 Extruded Polystyrene 14
 3.7.2.3 Vacuum-Insulated Panels 14
 3.7.3 Phase Change Materials 15
 3.7.3.1 Water-based Gel-packs 15
 3.7.3.2 Alternative Phase-Change Materials 16
 3.7.3.3 Dry Ice 16
 3.8 Characteristic Charts 16

4.0 QUALIFICATION OF PASSIVE THERMAL PROTECTION SYSTEMS .. 20
 4.1 User Requirements Specification and System Selection .. 20
 4.2 Design Qualification 22
 4.3 Dynamic / Distribution Testing 23
 4.4 Operation and Performance Qualification Testing .. 25
 4.4.1 Qualification Protocol and Report 25
 4.4.2 Operational Qualification 25
 4.4.3 Performance Qualification Testing 26
 4.4.4 Acceptance Criteria 27
 4.4.5 Ongoing verification 27

5.0 OPERATIONAL HANDLING OF PASSIVE THERMAL PROTECTION SYSTEMS .. 28
 5.1 Inspection of Passive Thermal Protection Systems and Components .. 28
 5.2 Preparation for Use or Reuse of New and Recycled Passive Thermal Protection Systems and Components .. 28
 5.3 Assembly of Passive Thermal Protection Systems and Components .. 29
 5.3.1 Thermal Covers and Blankets 29
 5.3.2 Shipping Containers 30
 5.4 Shipment Execution Tendering to Transportation Service Provider .. 30
 5.5 Destination Receipt (Delivery) of Passive Thermal Protection Systems .. 30
 5.6 Coordination at Origin/Collection 31
 5.7 Return/Reverse Logistics 31
 5.8 Reclamation .. 32
 5.9 Receipt, Inspection, and Handling of Returned Materials .. 33
 5.9.1 Cleaning and Sanitation 33
 5.9.2 Labeling, Repacking, Reshipping or Restocking .. 33
 5.10 Tracking Systems 33
 5.11 Waste Management 35

6.0 CONCLUSION ... 36

7.0 APPENDIX I: RECYCLING 38

8.0 APPENDIX II: FMEA THERMAL COVERS USED VIA OCEAN .. 44
 8.1 Lessons learned 49

9.0 APPENDIX III: FMEA THERMAL COVERS USED VIA AIR .. 50
 9.1 Lessons Learned 54

10.0 REFERENCES ... 55

11.0 ADDITIONAL READING 56
FIGURES AND TABLES INDEX

Figure 3.2.1-1 Heat Transfer Modes 6
Figure 3.2.1-2 Heat Flow Direction 7
Figure 3.2.2-1 Phase Changes of Matter 8
Figure 3.2.2-2 Latent Heat Storage at Constant Temperature 8
Figure 3.3.1-1 Typical Single-Layer or Single-Skin Cover 9
Figure 3.3.1-2 Typical Multiple-Layer Cover Material 9
Figure 3.3.2-1 Typical Silver-Coloured Bubble-Foil Cover Material 9
Figure 3.4.1-1 Typical Thermal Blanket Material 10
Figure 3.5-1 Molded Box and Lid Design 11
Figure 3.5-2 Six-Piece Panel Design 11
Table 3.7.3.1-1 Water-Based Refrigerant Presentations 16
Table 3.8-1 Chart of Characteristics of Passive Thermal Protection Systems 17
Table 3.8-2 Typical Product Temperature Parameters 18

Figure 4.3-1 Process Flow for a Passive Shipper Used in the Courier Network.............. 24
Figure 4.3-2 Steps to System Qualification 25
Figure 5.3.1-1 Pallet Cover & Blanket Configurations 29
Figure 5.7-1 Typical Reverse Logistic System 32
Figure 5.10-1 Tracking System Components 34
Table 7.0-1 Chart of Recovery, Recycling, and Disposal Options for Commonly Used Materials 38

Table 8.0-1 Key Scenario Information 44
Table 8.0-2 FMEA Rating 46
Table 8.0-3 FMEA Results 47
Table 8.0-4 FMEA Recommendations 48
Table 9.0-1 Key Scenario Information 50
Table 9.0-2 FMEA Rating 52
Table 9.0-3 FMEA Results 53
Table 9.0-4 FMEA Recommendations 54
1.0 Introduction

This technical report discusses the qualification and operational handling of passive thermal protection systems (TPS) for temperature-controlled distribution of pharmaceutical and biological products. The intent of this information is to assist stakeholders in the supply chain to preserve the quality, safety, and efficacy of these products during distribution. This report provides specific guidance on the types of passive systems, including the materials used in their manufacture, characteristics and capabilities of these systems, qualification approach, operational use and reuse, and options for recycling at the end of the systems’ life.

This report introduces the basics of thermodynamics and the effect these principles have on passive thermal protection systems, followed by a discussion on the types of passive thermal protection systems, materials used in construction and a review of their characteristics. User requirements and risk assessment are described in terms of key decision tools in choosing the appropriate technology.

Qualification is briefly discussed to provide an understanding of the best approach for each type of passive system. This report also provides guidance on the use and operation of different technologies to ensure optimum performance within the supply chain. Furthermore, opportunities for reusing systems or components are discussed in an effort to reduce cost and waste.

Appendices II and III and references at the end of the document include samples of executed Failure Modes and Effects Analysis (FMEA) for using passive technologies in the supply chain, and a table highlighting the options/examples for recovery and recycling of materials used in the construction of passive thermal protection systems.

1.1 Purpose and Scope

This guidance has been developed by members of the PDA Pharmaceutical Cold Chain Interest Group (PCCIG). The technical report team includes representatives from the pharmaceutical industry, suppliers of thermal covers, passive shipping systems and temperature monitors, logistic service providers and carriers. Stakeholders include the pharmaceutical supply chain, including manufacturers, suppliers of passive systems, suppliers of temperature monitors, logistic service providers, carriers, clinicians, handling agents, wholesalers, airlines and any other interested parties. This guidance document serves to complement the information provided in previously published PDA Technical Reports No’s 39, 58, and 64 by describing in more detail the qualification and operational use of passive thermal protection systems (1-3).

The purpose of using passive thermal protection systems for the distribution of temperature-sensitive pharmaceutical products is to ensure that the product is maintained within the defined temperature range for a defined time period. The decision to use a passive system versus an active system is dictated by many factors including, but not limited to the following (list below is not in any sequential order):

- Regulatory requirements
- Size of load
- Overall cost for distribution
- Availability of systems
- Handling capabilities of stakeholders within the supply chain
- Product temperature requirements / stability data
- Shipment duration
- Environment (e.g., season, prevailing [expected] temperature)
• Available controls along the shipping lane
• Customer needs and expectations

The decision as to which technology to use is derived from a user requirements specification (URS) defined by these factors. Additionally, the successful compilation and execution of the Operational Qualification (OQ) and the Performance Qualification (PQ), is dependent on a User Requirements Specification (URS) containing clear, concise and testable requirements. Other considerations might include:
• Use of the system
• Whether any of the components require preconditioning prior to use
• Whether opportunities exist to use the system more than once
• What options are available for recycling at the end of the systems’ life.