

Technical Report No. 72

Passive Thermal Protection Systems for Global Distribution: Qualification and Operational Guidance

PDA Passive Thermal Protection Systems for Global Distribution: Qualification and Operational Guidance Technical Report Team

Authors				
Richard Peck, TOWER Cold Chain Solutions, Co-Chair	Karl Kussow, FedEx Custom Critical			
Peter Mirabella, QProducts & Services, Co-Chair	Peter Lockett, TP3 Global			
Royce Heap, Fisher Clincal Services	Désirée Valentine, Dayla Partners			
Travis Hudson, BioConvergence LLC				
Contributors				
Erik J. van Asselt, PhD, Merck, Sharp &	Paul Harber, Modality Solutions			
Dohme B.V. (MSD)	Richard Harrop, TOPA Verpakking			
Gert-Jan van Diest, AbbVie	Claude Jolicoeur, Mckesson			
Jean-Pierre Emond, Georgia Tech Research Institute	Ken Maltas, Sonoco Thermosafe			
Andrew Green, Laminar Medica				

DISCLAIMER The content and views expressed in this Technical Report are the result of a consensus achieved by the authorizing Technical Report Team and are not necessarily views of the organizations they represent.

Passive Thermal Protection Systems for Global Distribution: Qualification and Operational Guidance

Technical Report No. 72

ISBN 978-0-939459-80-3 © 2015 Parenteral Drug Association, Inc. All rights reserved.

www.pda.org/bookstore

Table of Contents

1.0	INTRODUCTION 1		
	1.1	Purpose and Scope1	
2.0	GLO	SSARY OF TERMS 3	
3.0	OVERVIEW		
	3.1	Purpose of Passive Thermal	
	3.2	Protection Systems5 Basic Principles of Thermodynamics and	
	0.2	the Impact on Passive Thermal Protection	
		System Performance5	
		2.1 Heat Transfer5	
		2.2 Phase Change	
	3.3		
		3.1 Single-Skin Fabric/Composite	
		3.2 Bubble Foil	
		Thermal Blankets / Quilts	
		4.1 Outer and finite Layers	
	3.5	Thermal Passive Shipping System	
	3.6	Semi-Active Thermal Passive Shipping	
	0.0	System	
	3.7	Materials used in Construction of Passive	
		Thermal Protection Systems12	
		7.1 Outer Packaging Materials12	
		3.7.1.1 Paper Corrugate12	
		3.7.1.2 Plastic Corrugate	
		7.2 Insulation Materials	
		3.7.2.1 Polyurethane and Polyisocyanurate 133.7.2.2 Polystyrene	
		3.7.2.2.1 Expanded Polystyrene	
		3.7.2.2.2 Extruded Polystyrene	
		3.7.2.3 Vacuum-Insulated Panels	
		7.3 Phase Change Materials	
		3.7.3.1 Water-based Gel-packs	
		3.7.3.2 Alternative Phase-Change Materials 16	
		3.7.3.3 Dry Ice	
	3.8	Characteristic Charts16	
4.0		ALIFICATION OF PASSIVE THERMAL DTECTION SYSTEMS 20	
	4.1	User Requirements Specification and	
		System Selection20	
	4.2	Design Qualification22	
	4.3	Dynamic / Distribution Testing23	
	4.4	Operation and Performance	
		Qualification Testing25	

4.4.1 Qualifie	cation Protocol and Report			
4.4.2 Operat	ional Qualification25			
4.4.3 Perform	nance Qualification Testing26			
	tance Criteria27			
4.4.5 Ongoin	ig verification27			
5.0 OPFRATIONAL	HANDLING OF PASSIVE			
	DTECTION SYSTEMS 28			
	n of Passive Thermal Protection and Components28			
5.2 Preparatio	n for Use or Reuse of New and Passive Thermal Protection			
	and Components28			
5.3 Assembly	of Passive Thermal Protection and Components29			
	Covers and Blankets			
	g Containers30			
5.4 Shipment	Execution Tendering to			
	ation Service Provider			
	rotection Systems			
	ion at Origin/Collection			
	verse Logistics			
	on32			
5.9 Receipt, Ir	nspection, and Handling of			
	Materials33			
	ng and Sanitation33			
	ng, Repacking, Reshipping or			
	cking			
	Systems			
5.11 Waste Ma	anagement35			
6.0 CONCLUSION.				
7.0 APPENDIX I: R	ECYCLING			
	FMEA THERMAL COVERS			
	earned			
	FMEA THERMAL COVERS			
9.1 Lessons L	earned54			
10.0 REFERENCES 55				
11.0 ADDITIONAL	READING 56			

FIGURES AND TABLES INDEX

Figure 3.2.1-1	Heat Transfer Modes6	Figure 4.3-
Figure 3.2.1-2	Heat Flow Direction7	
Figure 3.2.2-1	Phase Changes of Matter8	Figure 4.3-
Figure 3.2.2-2	Latent Heat Storage at Constant Temperature	Figure 5.3. Figure 5.7-
Figure 3.3.1-1	Typical Single-Layer or Single-Skin Cover9	Figure 5.10 Table 7.0-1
Figure 3.3.1-2	Typical Multiple-Layer Cover Material9	
Figure 3.3.2-1	Typical Silver-Coloured Bubble-Foil Cover Material9	Table 8.0-1 Figure 8.0-
Figure 3.4.1-1	Typical Thermal Blanket Material 10	Table 8.0-2
Figure 3.5-1	Molded Box and Lid Design11	Table 8.0-3
Figure 3.5-2	Six-Piece Panel Design11	Table 8.0-4
Table 3.7.3.1-1	Water-Based Refrigerant Presentations16	Table 9.0-1
Table 3.8-1	Chart of Characteristics of Passive Thermal Protection Systems	Figure 9.0- Table 9.0-2
Table 3.8-2	Typical Product Temperature Parameters18	Table 9.0-3 Table 9.0-4

gure 4.3-1	Process Flow for a Passive Shipper Used in the Courier Network
gure 4.3-2	Steps to System Qualification
gure 5.3.1-1	Pallet Cover & Blanket Configurations 29
gure 5.7-1	Typical Reverse Logistic System 32
gure 5.10-1	Tracking System Components
ble 7.0-1	Chart of Recovery, Recycling, and Disposal Options for Commonly Used Materials
ble 8.0-1	Key Scenario Information 44
gure 8.0-1	Shipping Process Map45
ble 8.0-2	FMEA Rating 46
ble 8.0-3	FMEA Results 47
ble 8.0-4	FMEA Recommendations 48
ble 9.0-1	Key Scenario Information 50
gure 9.0-1	Process Map51
ble 9.0-2	FMEA Rating52
ble 9.0-3	FMEA Results 53
ble 9.0-4	FMEA Recommendations54

1.0 Introduction

This technical report discusses the qualification and operational handling of passive thermal protection systems (TPS) for temperature-controlled distribution of pharmaceutical and biological products. The intent of this information is to assist stakeholders in the supply chain to preserve the quality, safety, and efficacy of these products during distribution. This report provides specific guidance on the types of passive systems, including the materials used in their manufacture, characteristics and capabilities of these systems, qualification approach, operational use and reuse, and options for recycling at the end of the systems' life.

This report introduces the basics of thermodynamics and the effect these principles have on passive thermal protection systems, followed by a discussion on the types of passive thermal protection systems, materials used in construction and a review of their characteristics. User requirements and risk assessment are described in terms of key decision tools in choosing the appropriate technology.

Qualification is briefly discussed to provide an understanding of the best approach for each type of passive system. This report also provides guidance on the use and operation of different technologies to ensure optimum performance within the supply chain. Furthermore, opportunities for reusing systems or components are discussed in an effort to reduce cost and waste.

Appendices II and **III** and references at the end of the document include samples of executed Failure Modes and Effects Analysis (FMEA) for using passive technologies in the supply chain, and a table highlighting the options/examples for recovery and recycling of materials used in the construction of passive thermal protection systems.

1.1 Purpose and Scope

This guidance has been developed by members of the PDA Pharmaceutical Cold Chain Interest Group (PCCIG). The technical report team includes representatives from the pharmaceutical industry, suppliers of thermal covers, passive shipping systems and temperature monitors, logistic service providers and carriers. Stakeholders include the pharmaceutical supply chain, including manufacturers, suppliers of passive systems, suppliers of temperature monitors, logistic service providers, carriers, clinicians, handling agents, wholesalers, airlines and any other interested parties. This guidance document serves to complement the information provided in previously published PDA Technical Reports No's 39, 58, and 64 by describing in more detail the qualification and operational use of passive thermal protection systems (1-3).

The purpose of using passive thermal protection systems for the distribution of temperature-sensitive pharmaceutical products is to ensure that the product is maintained within the defined temperature range for a defined time period. The decision to use a passive system versus an active system is dictated by many factors including, but not limited to the following (list below is not in any sequential order):

- Regulatory requirements
- Size of load
- Overall cost for distribution
- Availability of systems
- Handling capabilities of stakeholders within the supply chain
- Product temperature requirements / stability data
- Shipment duration
- Environment (e.g., season, prevailing [expected] temperature)

- Available controls along the shipping lane
- Customer needs and expectations

The decision as to which technology to use is derived from a user requirements specification (URS) defined by these factors. Additionally, the successful compilation and execution of the Operational Qualification (OQ) and the Performance Qualification (PQ), is dependent on a User Requirements Specification (URS) containing clear, concise and testable requirements. Other considerations might include:

- Use of the system
- Whether any of the components require preconditioning prior to use
- Whether opportunities exist to use the system more than once
- What options are available for recycling at the end of the systems' life.