TECHNOLOGY TRANSFER:

AN INTERNATIONAL GOOD PRACTICE GUIDE FOR PHARMACEUTICALS AND ALLIED INDUSTRIES

Mark Gibson Editor

PDA

Bethesda, MD, USA DHI Publishing, LLC River Grove, IL, USA

10 9 8 7 6 5 4 3 2 1

ISBN: x-xxxxxx-xx-x Copyright © 2005 Mark Gibson. All rights reserved.

All rights reserved. This book is protected by copyright. No part of it may be reproduced, stored in a retrieval system or transmitted in any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. Typeset in the United Kingdom by Dolffin. Printed in the United States of America.

Where a product trademark, registration mark, or other protected mark is made in the text, ownership of the mark remains with the lawful owner of the mark. No claim, intentional or otherwise, is made by reference to any such marks in the book.

While every effort has been made by the publisher and the author to ensure the accuracy of the information contained in this book, the organization accepts no responsibility for errors or omissions. The views expressed in this book are those of the editors and authors and may not represent those of either Davis Healthcare International or the PDA, its officers, or directors.

www.DHIBooks..com

PDA 3 Bethesda Metro Center Suite 1500 Bethesda, MD 20814 United States 301-986-0293 Davis Healthcare International Publishing, LLC 2636 West Street River Grove IL 60171 United States

CONTENTS

	Contents Preface List of Abbreviations	iii xi xiii
1.	Technology Transfer Introduction and Objectives Mark Gibson	1
	Purpose of the Book Technology Transfer and the Drug Discovery and Development Process Why is Technology Transfer Important? Scope of the Book References	1 1 6 7 11
2.	Technology Transfer: The Regulatory and Business Perspective Alan Harris and Siegfried Schmitt	13
	Introduction	13
	Regulatory Requirements for Technology Transfer	13
	Safety, Health and Environmental (SHE) Regulations	15
	General Safety and Health Considerations	16
	POTENTIAL IMPACT OF NOTIFICATION OF NEW	10
	SUBSTANCES (NONS) REGULATIONS	17
	Economic Factors	18
	Technology	19
	Social Aspects and the Impact on Technology Transfer	20
	Language	20
	Culture Team Building	21 22
	Conclusions	23
	References	24

3.	Technology Transfer: Organisation Strategy and Planning Steve Burns and Mark Gibson	25
	Introduction	25
	Stages of the Technology Transfer Process	26
	Stage 1: Pre-technology Transfer Preparation	26
	Technology Transfer Strategies	29
	Stage 2: Scale-up and Establish Process at Commercial Scale	32
	Stage 3: Plan and Perform Process Validation	33
	Management of Change	34
	Organisation	34
	Teams Supporting the Technology Transfer Process	36
	Global Technology Transfer Management Team (GTTMT)	36
	Sending Site (R&D) Drug Substance Project Team	38 20
	Paceiving Site (R&D) Drug Product Project Team	20 40
	Documentation Required to Support Technology Transfer	40 41
	Planning	42
	Timing	44
	References	46
	Acknowledgements	46
4.	Training: An Essential Element of Technology Transfer Siegfried Schmitt	47
	Introduction	47
	Learning from Technology Transfer	48
	Developing a Training Strategy	48
	Scope of Training	49
	Prioritisation and Context of Training Needs	49
	Detailed Contents of Training Programmes	50
	Methods and Tools for Delivering Training	51
	Management of Training Programmes	52
	Trainers	52
	Templates and Style Guidelines	53
	Iraining Documentation	53
	Language Used for Iraining Programmes	53
	Medsuring the Success of Iraining	54
	Conclusions	54 57
	CUTCLUSIONS	54

5.	Drug Substance Development and Technology Transfer	57
	Introduction	57
		57
	Introduction to Drug Substance Process Research and Development	57
	The Role of Process R&D	59
	Good Process Design	60
	Introduction to Technology Transfer for API	63
	Aims of Technology Transfer	65
	The Impact of Technology Transfer Issues on	05
	Process Development Strategies	66
	Farly Development Decisions	66
	Route Selection Regulatory and Sourcing Strategies	67
	Process Freeze	68
	Potential Impact of Notification of New Substances (NONS)	00
	Regulations	68
	Applying Risk Analysis and Risk Management to Technology	00
	Transfer Decisions	69
	Managing the Technology Transfer Programme	70
	Principles for Technology Transfer	70
	The Technology Transfer Team	70
	Documentation to be Transferred or Generated during	/ 1
	Technology Transfer and Establishment of the Process	72
		73
	Process Validation	74
	Case Study 1: Remacemide Hydrochloride	75
	Early Process Evaluation	75
	Process Research and Development Work	77
	Farly Technology Transfer of the Process for DPAP	77
	Second Source for DPAP	80
	Technology Transfer of the Final Stages of the Process	81
	Salt Selection Polymorphism and Particle Size	81
	Lessons from Case Study 1	82
	Case Study 2: Sibenadet Hydrochloride	83
	Synthesis and Technology Transfer of the Benzothiazolone Amine	05
	Intermediate	84
	Synthesis and Technology Transfer of the Intermediate Benzoate Ester	86
	Technology Transfer of the Final Steps	88
	Control of Physical Form	89
	Crystallisation/Drving Issues	90
	Overall Lessons from Case Study 2	90
	FLITLIRE DIRECTIONS FOR PROCESS DEVELOPMENT AND	50
	THE IMPACT ON TECHNIOLOGY TRANSFER	92
	Biopharmaceuticals	92

	Microwave and Ultrasonic Reactors	93
	Micro-reactor Technology and Continuous Processes	93
	Chromatographic Purification Techniques	93
	Overall Conclusions	94
	References	95
	Acknowledgments	97
6.	Drug Product Development and Technology Transfer Mark Gibson	99
	Introduction	99
	Product Design	100
	Product Optimisation	105
	Process Design and Optimisation	107
	Process Capability and Robustness	111
	Use of PAT to Aid Process Optimisation and Understanding	111
	Scale-Up and Technology Transfer	114
	Process Validation	116
	Clinical Trials Process Validation	116
	Cleaning Validation	117
	Process Validation of the Commercial Process:	
	Acceptance by Production	119
	Post-Validation and Post-Regulatory Approval Changes	122
	Documenting the Drug Development Process	124
	Drug Product Technology Transfer Case Studies	126
	Case Study 1	126
	Learning Points from Case Study 1	130
	Case Study 2	130
	Learning Points from Case Study 2	132
	Case Study 3	132
	Learning Points from Case Study 3	134
	References	135
7.	Analytical Methodology and Specifications	137
	Kevin McKiernan and Mark Hindle	
	Introduction	137
	Analytical Technology Transfer:	
	What to do before Formal Transfer Starts	138
	Production QC Involvement during Method Validation	140
	Production QC Involvement Post Validation	141
	Analytical Technology Transfer:	
	When does it Start and When does it Finish	142
	Principles of Analytical Methodology Transfer	144

Comparative Testing	145
Covalidation between Two Laboratories	145
Method Validation at the Receiving Site	145
Completion and Timing	146
THE TECHNOLOGY TRANSFER PROCESS FOR ANALYTICAL	
METHODOLOGY AND SPECIFICATIONS	146
Stage 1: Analytical Strategy	147
Stage 2: Knowledge and Information Transfer	147
Stage 3: Transfer Protocol	148
Stage 4: Analytical Testing	148
Stage 5: Summary Report	148
STAGE 1: ANALYTICAL STRATEGY	150
Analytical Method Transfer Team	150
Analytical Transfer Strategy Document	151
STAGE 2: KNOWLEDGE AND INFORMATION TRANSFER	153
Information Package	154
Knowledge Transfer	155
Method Discussion and Review	155
Training and Familiarisation	156
Approval of Information Transfer Package	157
STAGE 3: METHOD TRANSFER PROTOCOL	157
Testing Design	159
Analytical Sample Identification and Transportation	159
Acceptance Criteria	161
Use of Statistics	163
Approval of Method Transfer Protocol	165
STAGE 4: ANALYTICAL TESTING	165
STAGE 5: SUMMARY REPORT	166
Transfer Approval	167
Post-Approval Changes	167
Method Transfer: Potential Problems and How to Avoid Them	168
A Good Quality Method	168
Language and Culture	169
Communication	170
Documentation	171
Procedures	172
Timescales	172
Practical Problems	173
Acceptance Criteria	174
Summary	174
References	175

8. F	Pre-Approval Inspection and Launch	177
	Mark Gibson	
I	ntroduction	177
٦	The PAI Process	178
(Common PAI Deficiencies	179
F	YAI - What will be Inspected?	180
F	Al: How to Prepare?	183
1	1. Documented PAI Policy	183
Ź	Formation of PAI Preparation Team(s)	183
	3. Documentation, Data Review and Retrieval	185
4	4. Write the Development History Reports	188
	5. Good Level of cGMP and Compliance	189
6	5. Training and Awareness	191
F	PAI and Launch	193
1	Technology Transfer: Final Conclusions	193
ŀ	{eferences	195
Glossary	of Common Terms, Abbreviations and Acronyms	197
Author E	Biographies	217
Index		221
List of Ta	ables	
Table 1.1	Typical Examples of Preferred Drug Synthesis, Pharmaceutical and Biopharmaceutical Properties for Candidate Drugs	2
Table 3.1	Proposed Team Representatives on Global Technology Transfer Management Team (GTTMT)	37
Table 6.1	Typical Target Product Profile	103
Table 6.2	Process Design Considerations	109
Table 6.3	Immediate Release Film Coated Tablet	127
Table 6.4	Process Equipment and Scale for IR Film Coated Tablet	128
Table 6.5	Ophthalmic Solution	131
Table 7.1	Example Analytical Methodology Suitability Checklist for	
	Chromatographic Methods	139
Table 7.2	Generic Roles and Responsibilities for Transfer Documentation	150
Table 7.3	Summary of Transfer Requirements	152

Table 7.4Example of a Typical Transfer Matrix160Table 8.1Documentation Check List for PAI187

Table 8.2	Typical Contents of the Development Report	190
Table 8.3	Recommended Inspection Behaviour	192

List of Figures

Figure 1.1	The Drug Discovery and Development Process and	
-	Technology Transfer	3
Figure 3.1	Stages of Technology Transfer	27
Figure 3.2	High Level Documentation to Support Technology Transfer	43
Figure 5.1	The Process R&D Contribution to the Development Process	60
Figure 5.2	Hypothetical Process for API Manufacture	64
Figure 5.3	Medicinal Chemistry Synthesis of Remacemide Hydrochloride	76
Figure 5.4	Final Manufacturing Process for Remacemide Hydrochloride	78
Figure 5.5	Sibenadet Hydrochloride	84
Figure 5.6	Synthesis of the Benzothiazalone Intermediate for Sibenadet	
	Hydrochloride	85
Figure 5.7	Technology Transfer Process for Intermediate (2)	86
Figure 5.8	The Synthesis of the Benzoate Intermediate for Sibenadet	
	Hydrochloride	87
Figure 5.9	The Final Steps of the Sibenadet Hydrochloride Process	89
Figure 6.1	Stages of Product Development and Technology Transfer	101
Figure 6.2	Manufacturing Process for IR Film Coated Tablet	129
Figure 6.3	Manufacturing Process for Ophthalmic Solution	131
Figure 6.4	Manufacturing Process for Metered Dose Inhaler	133
Figure 7.1	Options for Involvement of QC Group in Technology	
	Transfer	141
Figure 7.2	Flow Diagram of the Analytical Process	149

PREFACE

In the early 1980's when I started my career in the pharmaceutical industry, I recall that Technology Transfer from R&D to Production did not attract the attention that it does today. This could be partly because the R&D and Production facilities were co-located on the same site for the majority of transfers in which I was involved. Pilot scale batches were made in the R&D facilities on one day and products requiring scale-up and commercial scale manufacture were undertaken in the Production plant on another. Technology transfer was a very informal process with few written guidelines and procedures. R&D and Production personnel were able to develop very good working relationships because they could easily spend a lot of time together and get to know each other well.

A few years later, on moving to another pharmaceutical company the circumstances had changed. The R&D site I worked at was in an isolated location and technology transfers were to distant Production sites, often overseas. Establishing good communication and planning were essential for success. With the plethora of company acquisitions and mergers over the past 15 to 20 years resulting in fewer, but much larger pharmaceutical companies, there has been an increased need to transfer technology between R&D and Production sites across the globe in a cost efficient and effective way. Pharmaceutical companies have been under increasing pressure to speed products from R&D to the market. At the same time, the drug development and regulatory hurdles have increased, including the need to pass an FDA pre-approval inspection if the product was destined for the United States market. The timely and successful technology transfer of new Drug Substances, Drug Products and Analytical Tests between these sites is a prerequisite to product registration, approval and launch and so the importance of having a structured approach to drug development and technology transfer has become paramount.

This book is intended to give a comprehensive overview and guide to the technology transfer process for pharmaceutical Drug Substance, Drug Product and the corresponding analytical tests and methods from R&D to Production. Each of the contributors has extensive personal knowledge and experience in this field and they

have provided practical examples to explain the critical factors involved in achieving successful and effective technology transfers. Several of the contributors are from AstraZeneca, including myself, but the reader must not assume that this book only reflects the AstraZeneca way of doing technology transfer. Many of the contributors have worked for different pharmaceutical companies; have been involved in developing and reviewing internal company guidelines and in giving seminars and presentations externally on technology transfer. I am indebted to each of the contributors for giving up so much of their time to produce the specialist chapters in this book.

This book should benefit practitioners working in the pharmaceutical and related industries from R&D, commercial Production and various other areas of responsibility such as; Project Management, Clinical, Regulatory Affairs and Quality Assurance.

Finally, I would like to thank my wife Alison and three children, Laura, Joanna and David, for their patience and understanding whilst I have been preparing this book and for not being able to spend so much time with over the past few months.

Mark Gibson

December, 2004

LIST OF ABBREVIATIONS

ANDA	Abbreviated New Drug Application
API	Active Pharmaceutical Ingredient
BIRA	Business Interruption Risk Assessment
BPC	Bulk Pharmaceutical Chemical
C of A	Certificate of Analysis
CBZ	Benzyloxycarbonyl
CD	Candidate Drugs
CBER	Center for Biologic Evaluation and Research
CDER	Center for Drug Evaluation and Research
CDS	Chromatography Data System
CDTP	CD Target Profile
CFR	Code of Federal Regulations
cGMP	Current Good Manufacturing Practice
CIP	Clean-In-Place
COG	Cost of Goods
CMC	Chemistry, Manufacturing and Controls
CMC	Contract Manufacturing Organisation
COPD	Chronic Pulmonary Obstructive Disease
COSHH	Control of Substances Hazardous to Health
СрК	Process Capability Index
CPMP	Committee for Proprietary Medicinal Products
CRO	Contract Research Organisation
СТА	Clinical Trial Application
CTD	Common Technical Document
DCC	Dicyclohexyl Carbodiimide
DMF	Drug Master File
DP	Drug Product
DPAP	Diphenylpropylamine
DPD	Drug Product Device
DQ	Design Qualification
DS	Drug Substance

EEC	European Economic Community	
EGMP	European Good Manufacturing Practice	
EINECS	European Inventory of Existing Commercial	
	Chemical Substances	
EMEA	European Agency for the Evaluation of Medicinal	
	Products	
EP	European Pharmacopoeia	
ER	Electronic Record	
ES	Electronic Signature	
FDA	Food and Drug Administration	
FIP	International Pharmaceutical Federation	
FP	Finished Pack	
FTIM	First Time In Man Studies	
GAMP	Good Automated Manufacturing Practice	
GC	Gas Chromatography	
GCP	Good Clinical Practice	
GI	Gastrointestinal	
GLP	Good Laboratory Practice	
GMP	Good Manufacturing Practice	
GTTMT	Global Technology Transfer Management Team	
GxP	European Good Practice	
HAZOP	Hazard and Operability Studies	
HPLC	High Performance Liquid Chromatography	
HSE	Health and Safety Executive	
ICH	International Conference on Harmonisation	
IMP	Investigative Medicinal Product	
IND	Investigational New Drug	
INDA	Investigational New Drug Application	
IP	Intellectual Property	
IQ	Installation Qualification	
ISPE	International Society of Pharmaceutical Engineers	
ISO	International Organisation for Standardisation	
JNDA	Japanese New Drug Application	
JP	Japanese Pharmacopoeia	
LIMS	Laboratory Information Management Systems	
LOD	Limit of Detection	
LOQ	Limit of Quantification	
M&A	Mergers and Acquisitions	
MA	Marketing Authorisation	
MAA	Marketing Authorisation Application	
MBR	Master Batch Record	
MCA	Medicines Control Agency	
MDI	Metered Dose Inhaler	

MHRA	Medicines and Healthcare Products Regulatory	
	Agency	
MRA	Mutual Recognition Agreement	
MSDS	Material Safety Data Sheets	
NCE	New Chemical Entity	
NDA	New Drug Application	
NIR	Near Infrared	
NME	New Molecular Entity	
NMR	Nuclear Magnetic Resonance	
NONS	Notification of New Substances	
OEL	Occupational Exposure Limit	
OOS	Out of Specification	
OP	Operational Qualification	
PAI	Pre-approval Inspection	
PAT	Process Analytical Technologies	
PDA	Parenteral Drug Association	
PIC	Pharmaceutical Inspection Convention	
pMDI	Pressurised Metered Dose Inhaler	
POC	Proof of Concept	
POP	Proof of Principle	
PPE	Personal Protective Equipment	
PQ	Performance Qualification	
PQ	Process Qualification	
PV	Process Validation	
PVC	Polyvinylchloride	
PVdC	Polyvinyldichloride	
QA	Quality Assurance	
QC	Quality Control	
QMS	Quality Management System	
QP	Qualified Person	
REACH	Registration, Evaluation and Authorisation of	
	Chemicals	
SHE	Safety, Health and Environmental Regulations	
SM	Starting Material	
SMB	Simulated Moving Bed Chromatography	
SMP	Stability Master Plan	
sNDA	Supplementary New Drug Application	
SOP	Standard Operating Procedure	
SST	System Suitability Testing	
SUPAC	Scale-up Post-Approval Changes	
TPP	Target Product Profile	
TT	Technology Transfer	
USP	United States Pharmacopoeia	

VMP	Validation Master Plan
WFI	Water for Injection