WATER ACTIVITY APPLICATIONS IN THE PHARMACEUTICAL INDUSTRY

Edited by Anthony M. Cundell Anthony J. Fontana, Jr.

$10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1$

ISBN: 1-933722-33-9

Copyright © 2009 by Anthony M. Cundell and Anthony J. Fontana, Jr. All rights reserved.

All rights reserved. This book is protected by copyright. No part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. Printed in the United States of America.

Where a product trademark, registration mark, or other protected mark is made in the text, ownership of the mark remains with the lawful owner of the mark. No claim, intentional or otherwise, is made by reference to any such marks in the book.

At the time of printing, all web site links referenced functioned, however PDA and DHI cannot guarantee the accuracy of the information or that the listed web sites will not move or delete information.

While every effort has been made by the publishers, editor, and authors to ensure the accuracy of the information contained in this book, this organization accepts no responsibility for errors or omissions. The views expressed in this book are those of the editor and authors and may not represent those of either Davis Healthcare International or the PDA, its officers, or directors.

PDA 4350 East West Highway Suite 200 Bethesda, MD 20814 United States 301-986-0293 www.pda.org

Davis Healthcare International Publishing, LLC 2636 West Street River Grove IL 60171 United States www.DHIBooks.com

I dedicate this book to the late John N. Smith, Professor of Biochemistry, Victoria University of Wellington, New Zealand, and A.P. Mulcock, Professor of Agricultural Microbiology, Lincoln College, Canterbury, New Zealand, who were responsible for my graduate education and growth as a scientist. They were outstanding mentors.

Professor John Smith, who had been a RAF bomber pilot in World War II and immigrated to New Zealand to take a chair in Biochemistry, was well known internationally for research in the metabolism of foreign organic compounds in animals and invertebrates. He had the distinction of having a fume hood built in his office so he could synthesize metabolic conjugates while attending to his paperwork. I worked on the metabolism of the insecticide DDT in the common housefly *Musa domestica*. Professor Smith taught me that research required persistence and the need to tell a good story when you write up your findings.

Professor Paul Mulcock, an outstanding applied microbiologist with broad interests in plant diseases, the microbiology of the fleece of sheep, the role of bacteria in the production of insect pheromones, and the production of ethanol as an alternative fuel, was a mentor who gave direction to a youthful and impetuous graduate student. My Ph.D. dissertation was on the biodegradation of vulcanized rubber. This research was the result of the failure of rubber o-rings in water and sewage mains in New Zealand and was supported by the Christchurch Regional Drainage Board, the Pottery and Ceramics Research Association, and the Natural Rubber Research Institute. Professor Mulcock encouraged me to collaborate with others and be willing to tackle microbiological research broadly. Paul remains a mentor and friend to this day.

Also, I would like to thank my present employer Schering-Plough Research Institute, and especially my supervisor Steve Farrand, for giving me the opportunity to work as a microbiologist collaborating with colleagues in Product Development Teams to bring safe and effective new drug products to the market.

> Anthony. M. Cundell May 2009

CONTENTS

Foi	Foreword	
Pre	eface	xv
1.	Introduction: Historical Highlights of Water Activity Research Anthony J. Fontana	1
2.	Water Activity: Fundamentals and Relationships Anthony J. Fontana	19
	Introduction	19
	Water Activity Definition	20
	Energy of Water in a System	21
	Nonequilibrium Systems	22
	Temperature Dependence of Water Activity	23
	Water Activity in Frozen Systems	24
	Water Activity Influence on Stability	
	and Quality	25
	Chemical Reactivity	26 26
	Physical Properties Microbial Growth	20 28
	Microbial Growth	20
3.	Water Activity Determination and Standard-Setting Organizations Anthony M. Cundell	35

4.	Measurement of Water Activity, Moisture Sorption Isotherms, and Moisture Content of Drug Substances,			
	Excipients, and Drug Products	41		
	Anthony J. Fontana			
	Introduction	41		
	Measurement of Water Activity	42		
	Methods	42		
	Chilled Mirror Dewpoint	42		
	Electric Hygrometers	45		
	Other Methods	47		
	Sampling Protocols	50		
	Temperature	54		
	Calibration and Validation	56		
	Moisture Sorption Isotherm Determination	59		
	Methods	63		
	Static Desiccator Methods	63		
	Controlled Atmosphere Microbalance/			
	Dynamic Vapor Sorption	64		
	Dynamic Dewpoint Isotherm Method	65 67		
	Moisture Content			
	Methods	67		
	Loss-On-Drying	68		
	Karl Fischer Moisture Determination	69		
	Replacing Karl Fischer with Water Activity	69		
5.	Utilization of Moisture Sorption Data in Pharmaceutics	79		
	Leonard N. Bell			
	Introduction	79		
	Types of Moisture Sorption Isotherms	80		
	Adsorption and Desorption Isotherms	82		
	Modeling Moisture Sorption Data	84		
	Brunauer, Emmett, and Teller (BET) Equation	84		
	Guggenheim-Anderson-deBoer (GAB) Equation	86		
	Temperature Effects	88		
	Using Moisture Sorption Data	88		

	Dry Ingredient Mixing	89
	Ingredient Selection for Lowering Water Activity	91
	Raoult's Law	91
	Norrish Equation	93
	Ross Equation	97
	Model Comparison	98
	Water Activity Prediction	99
	Conclusion	101
6.	The Role of Water Activity in Drug	100
	Product Development Roberta Tracy, Michelle Raikes, and Christian Meissner	109
	Introduction	109
	Excipients	1109
	Excipient Isotherms	110
	Chemical Stability	112
	Preformulation Study	112
	Aspartame Degradation	113
	Active Ingredient Degradation in Drug Product	115
	Characterization of Blister Integrity	118
	Physical Stability	120
	Microbiological Stability/Risk Analysis	121
	Conclusion	123
7.	Water Activity and Cosmetic Preservation	127
	P.A. Geis and S.L. Schultz	
	Introduction	127
	What Are Cosmetics?	128
	Cosmetic Preservation	130
	Preservative Testing	133
	Application of Water Activity in	. – .
	Cosmetic Preservation	134
	Increasing Potential for Water Activity in Cosmetic Preservation	134
	Water Activity as Cosmetic Preservative	135
	Water Activity in Preservative Combinations -	100
	The "Hurdle" Concept	137

	Packaging Facilitation of Water Activity for Preservation	138
	Watchouts for Water Activity in Preservation	170
	of Cosmetics	139
	Conclusions	141
8.	Water Activity and Survival of Probiotics	155
	John Coventry and Ross Crittenden	
	Probiotics and Problems with Viability	155
	Factors Influencing Probiotic Survival: The Importance of Water Activity	156
	The Glassy State of Dry Compounds and Water Mobility	158
	Membrane Integrity and the Interaction of Desiccant-Protectant Compounds	162
	Stress Responses	163
	Strategies to Enhance Probiotic Viability During Storage	165
	Outlook	166
).	Effects of Water Activity on Microorganisms	175
	Anthony M. Cundell	
	Introduction	175
	Water Activity Requirements for Growth	177
	Molds	177
	Yeast	181
	Bacteria	181
	Factors Affecting Water Requirements	182
	Nutrients	183
	Temperature	184
	Oxygen	184
	Ph	184
	Antimicrobial Agents	185
	Special Groups Of Microorganisms	185
	Halophilic Bacteria	185
	Osmophilic Yeast	185
	Xerophilic Molds	186

The Effect of Stress on Microbial Survival	187
Implication of Water Activity to	
Pharmaceutical Microbiology	188
Pharmaceutical Ingredients	190
Pharmaceutical Drug Products	193
Packaging Components	195
Preservative Effectiveness	196
10. Applications of Water Activity Management in the Pharmaceutical Industry Detlef Werner	205
Perspectives of Water Activity Management in the Pharmaceutical Industry	205
The Determination of Water Activity in Pharmaceutical Research and Quality Control	209
Example: Evaluation of the Sorption	211
Characteristics of Sugar Spheres	211
The Impact of Water Activity on the Microclimatic Properties of Drug Products	214
Example: Good Transportation Practice for the Prevention of Damages in Transit	214
Conclusion	220
11. Use of Water Activity to Support	
Microbiological Stability	223
Linda Skowronsky	
Introduction	223
Stability Temperature Selection for Microbial	
Quality Testing	231
Humidity Selection for Microbial Stability Tests	232
Water Activity, Moisture, and the Influence	
of Packaging on Stability	234
Replacing Microbial Limits Testing with Water Activity	238
In-Use Stability Testing	230
Conclusions	240

12. Water Activity and Pharmaceutical Manufacturing; A Regulatory Microbiology Perspective David Hussong	253
Appendices	259
Appendix A	260
Appendix B	262
Appendix C	265
Appendix D	276
Appendix E	278
Index	281

FOREWORD

By definition, food is nutritious. The problem for mankind has always been that what is nutritious to humans is equally nutritious to microorganisms. The earliest humans must have quickly realized that seeds which had become dry retained a good appearance longer than seeds which were moist – the first use of drying for preserving food commodities is lost in antiquity. The use of salt, added especially to much sought after and very perishable commodities like meat and fish, probably also dates from a few thousand years ago. The use of sugar as a means of preserving foods is a newer concept, as it clearly had to wait until the time when men began to extract sugar from cane or beets. So the concept of removing or binding water with sugar or salts as a means of preserving foods has been around for a long time. However, it is still only 50 years since the mechanisms underlying these methods have become the subject of scientific enlightenment.

A few papers published before the end of World War II described the influence of reduced atmospheric humidity on the growth of microorganisms, for example L.D. Galloway (*J Text Inst*, Vol 26:, pp T123-129, 1935) and D. Snow (*Ann Appl Biol*, Vol 32, pp 40-45, 1945), and the influence of high concentrations of salts or sugars on their growth (M. Ingram *In* Microbial Ecology, Cambridge University Press, 1957, pp 90-133). However, the modern science underlying our understanding of the influence of reduced water availability on microbial growth came with the seminal paper of W.J. Scott (*Adv Food Res*, Vol 7, pp 83-127, 1957), where he first put forward the principle that a chemical concept, water activity (written a_w), controls the growth or life on Earth, including that of microorganisms. Scott

applied this chemical concept to provide the understanding that drying, concentration, the reduction of atmospheric humidity and the addition of solutes were all one and the same thing – means of reducing water availability.

Bill Scott was a tall, well built man, with piercing eyes. His demeanor could best be described as "formidable" – especially to the young novice I was when I first met him. He was not easy with small talk, perhaps he was rather shy. However, he was a meticulous scientist. He was able to show that the ability of certain bacteria to grow in saturated salt was not fundamentally different from the ability of some yeasts to grow in concentrated foods. This was a giant leap in our understanding of the fundamentals governing the growth of microorganisms.

He understood that specific solute effects also exist, in particular that bacteria often thrive in salty environments, while fungi prefer to grow in the presence of low molecular weight carbohydrates.

Everyone is familiar with the influence of temperature and nutrition on life, but the overriding influence of water activity is much less well appreciated. The fact is that temperatures are conducive to life over much of the earth's surface and the nutrients necessary for the growth of all types of organisms are also abundant. The significance of water activity in controlling the occurrence of life on earth cannot be overestimated.

Indeed, growth of almost all life on Earth is constrained to water activities greater than 0.95. Life originated in water and a high proportion of life even now exists only in water. Seawater has a water activity in excess of 0.99. The permanent wilt point of most plants is around 0.98 a_w . Animal life universally carries its water with it, and few animals appear to be able to survive with internal water activities lower than that. Only microorganisms appear to have broken through the water activity barrier, and have evolved the capability of growing and reproducing at < 0.95 a_w , in a few cases below 0.70 a_w .

Scott was co-author on just a few more papers on this topic (e.g., Scott, *Aust J Biol Sci*, Vol 6, pp 549-564, 1953; B.J. Marshall and Scott, *ibid* Vol 11, pp 171-176, 1958), but his colleagues at the Commonwealth Scientific and Industrial Research Organization's

Division of Food Science in North Ryde, NSW, Australia carried on his work for a number of years. Preeminent amongst these was J.H.B. Christian, who undertook his Ph.D. with Ingram on bacterial water relations and subsequently published several papers (e.g., Christian and Waltho, *J Gen Microbiol*, Vol 25, pp 97-102, 1961; *ibid* Vol 35, pp 205-213, 1964).

I started work in this area with an MSc degree entitled to "Microbiological problems in prune preservation" (University of New South Wales, 1965). During that work, I was able to isolate nearly all of the known xerophilic fungi, and one or two new ones besides. A couple of papers resulted (Pitt and Christian, Appl Microbiol, Vol 16, pp 1853-1858, 1966; *ibid* Vol 20, pp 682-686, 1970) and in due course, a review (Pitt, in Water Activity and Foods, Academic Press, London, pp 273-307, 1975). About that time, my colleague Ailsa Hocking and I commenced a program to understand more clearly the influence of water activity on the growth of the common fungi which cause food spoilage (Pitt and A.D. Hocking, J Gen Microbiol, Vol 101, pp 35-40, 1977; Hocking and Pitt, Trans Br Mycol Soc, Vol 73, pp 141-145, 1979; S. Andrews and Pitt, J Gen Microbiol, Vol 133, pp 233-238, 1987; K. Wheeler et al., Trans Br Mycol Soc, Vol 90, pp 365-368, 1988; Vol 91, pp 631-638, 1988). To our surprise, we encountered two species of fungi which really prefer to grow in salty environments (Wheeler et al., J Gen Microbiol, Vol 134, pp 2255-2260, 1988). We coined the term "halophilic xerophiles" for these fungi to distinguish them from halophilic bacteria, which have an obligate requirement for high NaCl concentrations. Halophilic xerophiles have no requirement for salt, merely a preference. We also dispensed with the term "osmophile" for yeasts, because it is clear that the yeasts which grow at reduced water activity are simply xerophiles like the filamentous fungi.

What has all this to do with pharmaceuticals, you ask? The simple answer is that dehydration is used to provide stability for a very wide variety of pharmaceutical products, and many pharmaceutical products also provide entirely adequate nutrition for a wide range of microorganisms. Pharmaceutical products are just as much subject to the chemical and biological laws governing the growth of microorganisms as are food products. The work carried out at CSIRO in the years from 1950 to about 1990 (and of course also in a number of

other laboratories) provided a basis for understanding the potential for the growth of microorganisms in pharmaceutical products.

Dr. Bill Scott died a few years ago, but all of us engaged is in the preservation of foods and pharmaceuticals owe a very large debt of thanks to him.

> John I. Pitt, PhD Honorary Research Fellow Food Science Australia North Ryde, NSW 2113 Australia

PREFACE

After a water activity workshop that the co-editors taught at the 2007 Eastern Analytical Symposium held in Somerset, New Jersey that was poorly attended, we discussed why we did not draw an audience in what could be considered the geographic center of the U.S. pharmaceutical industry. Although we both felt passionately about the role of water activity determination in the development of pharmaceutical drug products, we believe that the technology had not met its potential in the pharmaceutical industry due to a lack of generalized information available to formulators, analytical chemists and microbiologists working in product development. In contrast, water activity is considered a critical development parameter in the processed food industry and is widely applied in product development. However, as the original concept was developed by the food microbiologist William J. Scott over fifty years ago and its application to the food industry is supported by numerous research articles, symposia, books and government regulations, this is not surprising. With the inspiration of the recent book Water Activity in Foods - Fundamentals and Applications G.V. Barbosa-Canovas, A.J. Fontana, Jr., S.J. Schmidt and T.P. Labuza (editors) IFT Press/Blackwell Publishing (2007), we decided to edit the current book to advance the knowledge of water activity in the pharmaceutical industry.

The book consists of twelve chapters and a series of appendices written by invited experts in the field of water activity as it is applied to the pharmaceutical industry. The eminent Australian mycologist Dr. John I. Pitt, who was a collaborator with Scott at the Commonwealth Scientific and Industrial Research Organization (CSIRO) in New South Wales, Australia graciously agreed to write

a foreword to the book The first two chapters discuss the historic highlights of water activity research and the fundamentals and relationships of water activity (Anthony J. Fontana, Jr.) and the third chapter outlines the role of standard-setting organizations in water activity determination (Anthony M. Cundell). The authors call on their experience of working for a major supplier of water activity testing equipment (Fontana) and as a pharmaceutical microbiologist who is a member of the USP Microbiology and Sterility Assurance Committee of Experts (Cundell) to write these chapters. Chapter 4 discusses the utilization of moisture sorption data in pharmaceutical development (L. Bell). The fifth chapter discusses in detail the measurement of water activity, moisture isotherms and moisture content of pharmaceutical ingredients and drug products (Fontana) and can be seen as the meat and potatoes of the book. The sixth chapter on the role of water activity in formulation development (Roberta Tracy, Michelle Raikes, and Christian Meissner) represents a collaboration between chemists and a microbiologist working in a pharmaceutical company highlighting the potential of the analytical technology. Chapter 7 critically assesses the role of water activity in formation development in the personal care industry (Philip Geis and Steven Schultz) in response to the positions taken in the book Preservative-free and Self-Preserving Cosmetics and Drugs (J.J. Kabara and D.S. Orth, editors) Marcel Dekker, New York (1997). The eighth chapter is most timely, with the growing market for probiotics, and discusses the role of low water activity in the survival of live cultures in nutritional supplements (John Coventry and Ross G. Crittenden). The ninth chapter reviews the effects of water activity on the growth and survival of microorganisms of interest to the pharmaceutical industry (Anthony M. Cundell). Chapter 10 assesses the concept of pro-active water activity management in the pharmaceutical industry (Hanns G. Werner) and lastly, the eleventh chapter presents an unique viewpoint on the role of water activity determination in setting up microbial testing in stability testing programs (Linda K. Skowronsky). And lastly, the twelfth chapter, written by a leading FDA microbiologist (David Hussong) brings a regulatory perspective to the role of water activity to the microbial testing and control of pharmaceutical products.

The co-editors congratulate the chapter authors in writing a pioneering book on the application of water activity in the pharmaceutical industry. Any limitations in the scope of the book are the responsibility of the co-editors and their ability to recruit experts to write the chapters. It is our wish that this contribution will greatly encourage the use of the concept of water activity to improve the quality, efficacy and safety of pharmaceutical drug products.

> Anthony J. Fontana, Jr. Anthony M. Cundell